Search Results

Now showing 1 - 5 of 5
  • Item
    Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication
    (Austin, Tex. : Landes Bioscience, 2021) Rasouli, Milad; Fallah, Nadia; Bekeschus, Sander
    Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
  • Item
    The novel arylindolylmaleimide PDA-66 displays pronounced antiproliferative effects in acute lymphoblastic leukemia cells
    (London : BioMed Central, 2014) Kretzschmar, C.; Roolf, C.; Langhammer, T.-S.; Sekora, A.; Pews-Davtyan, A.; Beller, M.; Frech, M.J.; Eisenlöffel, C.; Rolfs, A.; Junghanss, C.
    Background: Prognosis of adult patients suffering from acute lymphoblastic leukemia (ALL) is still unsatisfactory. Targeted therapy via inhibition of deregulated signaling pathways appears to be a promising therapeutic option for the treatment of ALL. Herein, we evaluated the influence of a novel arylindolylmaleimide (PDA-66), a potential GSK3β inhibitor, on several ALL cell lines.Methods: ALL cell lines (SEM, RS4;11, Jurkat and MOLT4) were exposed to different concentrations of PDA-66. Subsequently, proliferation, metabolic activity, apoptosis and necrosis, cell cycle distribution and protein expression of Wnt and PI3K/Akt signaling pathways were analyzed at different time points.Results: PDA-66 inhibited the proliferation of ALL cells significantly by reduction of metabolic activity. The 72 h IC50 values ranged between 0.41 to 1.28 μM PDA-66. Additionally, caspase activated induction of apoptosis could be detected in the analyzed cell lines. PDA-66 influenced the cell cycle distribution of ALL cell lines differently. While RS4;11 and MOLT4 cells were found to be arrested in G2 phase, SEM cells showed an increased cell cycle in G0/1 phase.Conclusion: PDA-66 displays significant antileukemic activity in ALL cells and classifies as candidate for further evaluation as a potential drug in targeted therapy of ALL.
  • Item
    Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo
    (London : BioMed Central, 2012) Partecke, L.I.; Evert, K.; Haugk, J.; Doering, F.; Normann, L.; Diedrich, S.; Weiss, F.-U.; Evert, M.; Huebner, N.O.; Guenther, C.; Heidecke, C.D.; Kramer, A.; Bussiahn, R.; Weltmann, K.-D.; Pati, O.; Bender, C.; von Bernstorff, W.
    Background: The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas.Methods: We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357.Results: TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/-0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/-4.4% of dead cells (untreated control) versus 78.0+/-9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/-7.2%, p=0.0009 versus 12.3+/-6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/-12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/-13.2% versus 37.7+/-14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP.Conclusions: Our data suggest possible future intra-operative applications of TTP to reduce microscopic residual disease in pancreatic cancer resections. Further promising applications include other malignancies (central liver/lung tumours) as well as synergistic effects combining TTP with chemotherapies. Yet, adaptations of plasma sources as well as of the composition of effective components of TTP are required to optimize their synergistic apoptotic actions.
  • Item
    Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation
    (Washington, DC [u.a.] : Assoc., 2019) Huo, Shuaidong; Gong, Ningqiang; Jiang, Ying; Chen, Fei; Guo, Hongbo; Gan, Yaling; Wang, Zhisen; Herrmann, Andreas; Liang, Xing-Jie
    The development of an efficient delivery system for enhanced and controlled gene interference–based therapeutics is still facing great challenges. Fortunately, the flourishing field of nanotechnology provides more effective strategies for nucleic acid delivery. Here, the triplex-forming oligonucleotide sequence and its complementary strand were used to mediate self-assembly of ultrasmall gold nanoparticles. The obtained sunflower-like nanostructures exhibited strong near-infrared (NIR) absorption and photothermal conversion ability. Upon NIR irradiation, the large-sized nanostructure could disassemble and generate ultrasmall nanoparticles modified with c-myc oncogene silencing sequence, which could directly target the cell nucleus. Moreover, the controlled gene silencing effect could be realized by synergistically controlling the preincubation time with the self-assembled nanostructure (in vitro and in vivo) and NIR irradiation time point. This study provides a new approach for constructing more efficient and tailorable nanocarriers for gene interference applications
  • Item
    Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, 2017) Liedtke, Kim Rouven; Bekeschus, Sander; Kaeding, André; Hackbarth, Christine; Kuehn, Jens-Peter; Heidecke, Claus-Dieter; von Bernstorff, Wolfram; von Woedtke, Thomas; Partecke, Lars Ivo
    Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors.