Search Results

Now showing 1 - 6 of 6
  • Item
    Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
    (Washington, DC : ACS Publ., 2019) Bianchi, Federico; Kurtén, Theo; Riva, Matthieu; Mohr, Claudia; Rissanen, Matti P.; Roldin, Pontus; Berndt, Torsten; Crounse, John D.; Wennberg, Paul O.; Mentel, Thomas F.; Wildt, Jürgen; Junninen, Heikki; Jokinen, Tuija; Kulmala, Markku; Worsnop, Douglas R.; Thornton, Joel A.; Donahue, Neil; Kjaergaard, Henrik G.; Ehn, Mikael
    Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research. © 2019 American Chemical Society.
  • Item
    Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune's atmosphere from VLT/MUSE Narrow Field Mode Observations
    (Orlando, Fla. : Academ. Press, 2019) Irwin, Patrick G.J.; Toledo, Daniel; Braude, Ashwin S.; Bacon, Roland; Weilbacher, Peter M.; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn S.
    Observations of Neptune, made in 2018 using the new Narrow Field Adaptive Optics mode of the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) from 0.48 to 0.93 μm, are analysed here to determine the latitudinal and vertical distribution of cloud opacity and methane abundance in Neptune's observable troposphere (0.1–∼ 3bar). Previous observations at these wavelengths in 2003 by HST/STIS (Karkoschka and Tomasko 2011, Icarus 205, 674–694) found that the mole fraction of methane above the cloud tops (at ∼ 2 bar) varied from ∼ 4% at equatorial latitudes to ∼ 2% at southern polar latitudes, by comparing the observed reflectivity at wavelengths near 825 nm controlled primarily by either methane absorption or H2–H2/H2–He collision-induced absorption. We find a similar variation in cloud-top methane abundance in 2018, which suggests that this depletion of methane towards Neptune's pole is potentially a long-lived feature, indicative of long-term upwelling at mid-equatorial latitudes and subsidence near the poles. By analysing these MUSE observations along the central meridian with a retrieval model, we demonstrate that a broad boundary between the nominal and depleted methane abundances occurs at between 20 and 40°S. We also find a small depletion of methane near the equator, perhaps indicating subsidence there, and a local enhancement near 60–70°S, which we suggest may be associated with South Polar Features (SPFs) seen in Neptune's atmosphere at these latitudes. Finally, by the use of both a reflectivity analysis and a principal component analysis, we demonstrate that this depletion of methane towards the pole is apparent at all locations on Neptune's disc, and not just along its central meridian.
  • Item
    A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe
    (Amsterdam : Elsevier, 2016) Zanatta, M.; Gysel, M.; Bukowiecki, N.; Müller, T.; Weingartner, E.; Areskoug, H.; Fiebig, M.; Yttri, K.E.; Mihalopoulos, N.; Kouvarakis, G.; Beddows, D.; Harrison, R.M.; Cavalli, F.; Putaud, J.P.; Spindler, G.; Wiedensohler, A.; Alastuey, A.; Pandolfi, M.; Sellegri, K.; Swietlicki, E.; Jaffrezo, J.L.; Baltensperger, U.; Laj, P.
    A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (σap) divided by elemental carbon mass concentration (mEC). σap and mEC have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. σap was determined using filter based absorption photometers and mEC using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of σap at a wavelength of 637 nm vary between 0.66 and 1.3 Mm−1 in southern Scandinavia, 3.7–11 Mm−1 in Central Europe and the British Isles, and 2.3–2.8 Mm−1 in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 μg m−3 in southern Scandinavia, 0.28–1.1 in Central Europe and the British Isles, and 0.22–0.26 in the Mediterranean. Both σap and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m2 g−1 (geometric standard deviation = 1.33) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However, absolute uncertainties of the reported MAC values remain as high as ± 30–70% due to the lack of appropriate reference methods and calibration materials. The mass ratio between elemental carbon and non-light-absorbing matter was used as a proxy for the thickness of coatings around the BC cores, in order to assess the influence of the mixing state on the MAC of BC. Indeed, the MAC was found to increase with increasing values of the coating thickness proxy. This provides evidence that coatings do increase the MAC of atmospheric BC to some extent, which is commonly referred to as lensing effect.
  • Item
    Removing biofilms from microstructured titanium Ex Vivo: A novel approach using atmospheric plasma technology
    (San Francisco, CA : Public Library of Science, 2011) Rupf, S.; Idlibi, A.N.; Marrawi, F.A.; Hannig, M.; Schubert, A.; von Mueller, L.; Spitzer, W.; Holtmann, H.; Lehmann, A.; Rueppell, A.; Schindler, A.
    The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 μm) were exposed to human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 μm (24 h) to 91 μm (72 h) covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease.
  • Item
    The Long-Term Evolution of the Atmosphere of Venus: Processes and Feedback Mechanisms: Interior-Exterior Exchanges
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Gillmann, Cedric; Way, M. J.; Avice, Guillaume; Breuer, Doris; Golabek, Gregor J.; Höning, Dennis; Krissansen-Totton, Joshua; Lammer, Helmut; O’Rourke, Joseph G.; Persson, Moa; Plesa, Ana-Catalina; Salvador, Arnaud; Scherf, Manuel; Zolotov, Mikhail Y.
    This work reviews the long-term evolution of the atmosphere of Venus, and modulation of its composition by interior/exterior cycling. The formation and evolution of Venus’s atmosphere, leading to contemporary surface conditions, remain hotly debated topics, and involve questions that tie into many disciplines. We explore these various inter-related mechanisms which shaped the evolution of the atmosphere, starting with the volatile sources and sinks. Going from the deep interior to the top of the atmosphere, we describe volcanic outgassing, surface-atmosphere interactions, and atmosphere escape. Furthermore, we address more complex aspects of the history of Venus, including the role of Late Accretion impacts, how magnetic field generation is tied into long-term evolution, and the implications of geochemical and geodynamical feedback cycles for atmospheric evolution. We highlight plausible end-member evolutionary pathways that Venus could have followed, from accretion to its present-day state, based on modeling and observations. In a first scenario, the planet was desiccated by atmospheric escape during the magma ocean phase. In a second scenario, Venus could have harbored surface liquid water for long periods of time, until its temperate climate was destabilized and it entered a runaway greenhouse phase. In a third scenario, Venus’s inefficient outgassing could have kept water inside the planet, where hydrogen was trapped in the core and the mantle was oxidized. We discuss existing evidence and future observations/missions required to refine our understanding of the planet’s history and of the complex feedback cycles between the interior, surface, and atmosphere that have been operating in the past, present or future of Venus.
  • Item
    Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: From Atmosphere to Geospace
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Alfonsi, Lucilla; Bergeot, Nicolas; Cilliers, Pierre J.; De Franceschi, Giorgiana; Baddeley, Lisa; Correia, Emilia; Di Mauro, Domenico; Enell, Carl-Fredrik; Engebretson, Mark; Ghoddousi-Fard, Reza; Häggström, Ingemar; Ham, Young-bae; Heygster, Georg; Jee, Geonhwa; Kero, Antti; Kosch, Michael; Kwon, Hyuck-Jin; Lee, Changsup; Lotz, Stefan; Macotela, Liliana; Marcucci, Maria Federica; Miloch, Wojciech J.; Morton, Y. Jade; Naoi, Takahiro; Negusini, Monia; Partamies, Noora; Petkov, Boyan H.; Pottiaux, Eric; Prikryl, Paul; Shreedevi, P.R.; Slapak, Rikard; Spogli, Luca; Stephenson, Judy; Triana-Gómez, Arantxa M.; Troshichev, Oleg A.; Van Malderen, Roeland; Weygand, James M.; Zou, Shasha
    The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring.