Search Results

Now showing 1 - 2 of 2
  • Item
    Application of hue spectra fingerprinting during cold storage and shelf-life of packaged sweet cherry
    (Cham : Springer, 2020) Le Nguyen, Lien Phuong; Visy, Anna; Baranyai, László; Friedrich, László; Mahajan, Pramod V.
    Presented work investigated the application of a new color analysis technique in post-harvest life of sweet cherry (Prunus avium L. ‘Hudson’). The hue spectra fingerprinting creates a histogram of image colors by summarizing the saturation. The advantage of this calculation method is that vivid colors make peaks while neutral background color is eliminated without object segmentation. Partial Least Squares (PLS) regression was used to estimate reference parameters during 9 d cold storage at 10 ± 0.5 °C (RH = 90 ± 1%) and following 2 d shelf-life at 20 ± 0.5 °C. The reference parameters of respiration, weight loss, fruit firmness and total soluble solid (TSS) content were measured. Samples were split into seven groups according to the number of perforations of polypropylene film and fructose concentration of moisture absorber. It was observed that parameters TSS and fruit firmness were the most sensitive to the length of storage. Weight loss was affected significantly by packaging. All reference parameters were estimated by PLS model with R2 > 0.917, but weight loss and respiration obtained high estimation error of RMSE% = 48.02% and 11.76%, respectively. TSS and fruit firmness prediction were successful with RMSE% = 0.84% and 1.85%, respectively. Desiccation and color change of peduncle became visible in the green range of hue spectra. Color change of red fruit was observed with decreasing saturation in the red range of hue spectra. Our findings suggest that hue spectra fingerprinting can be a useful nondestructive method for monitoring quality change of sweet cherry during post-harvest handling and shelf-life. © 2020, The Author(s).
  • Item
    Computer vision vs. spectrofluorometer-assisted detection of common nitro-explosive components with bola-type PAH-based chemosensors
    (London : RSC Publishing, 2021) Kovalev, Igor S.; Sadieva, Leila K.; Taniya, Olga S.; Yurk, Victoria M.; Minin, Artem S.; Santra, Sougata; Zyryanov, Grigory V.; Charushin, Valery N.; Chupakhin, Oleg N.; Tsurkan, Mikhail V.
    Computer vision (CV) algorithms are widely utilized in imaging processing for medical and personal electronics applications. In sensorics CV can provide a great potential to quantitate chemosensors' signals. Here we wish to describe a method for the CV-assisted spectrofluorometer-free detection of common nitro-explosive components, e.g. 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT), by using polyaromatic hydrocarbon (PAH, PAH = 1-pyrenyl or 9-anthracenyl) – based bola-type chemosensors. The PAH components of these chemical bolas are able to form stable, bright emissive in a visual wavelength region excimers, which allows their use as extended matrices of the RGB colors after imaging and digital processing. In non-polar solvents, the excimers have poor chemosensing properties, while in aqueous solutions, due to the possible micellar formation, these excimers provide “turn-off” fluorescence detection of DNT and TNT in the sub-nanomolar concentrations. A combination of these PAH-based fluorescent chemosensors with the proposed CV-assisted algorithm offers a fast and convenient approach for on-site, real-time, multi-thread analyte detection without the use of fluorometers. Although we focus on the analysis of nitro-explosives, the presented method is a conceptual work describing a general use of CV for quantitative fluorescence detection of various analytes as a simpler alternative to spectrofluorometer-assisted methods.