Search Results

Now showing 1 - 2 of 2
  • Item
    Nonlocal dielectric function and nested dark excitons in MoS2
    (London : Nature Publishing Group, 2019) Koitzsch, A.; Pawlik, A.-S.; Habenicht, C.; Klaproth, T.; Schuster, R.; Büchner, B.; Knupfer, M.
    Their exceptional optical properties are a driving force for the persistent interest in atomically thin transition metal dichalcogenides such as MoS2. The optical response is dominated by excitons. Apart from the bright excitons, which directly couple to light, it has been realized that dark excitons, where photon absorption or emission is inhibited by the spin state or momentum mismatch, are decisive for many optical properties. However, in particular the momentum dependence is difficult to assess experimentally and often remains elusive or is investigated by indirect means. Here we study the momentum dependent electronic structure experimentally and theoretically. We use angle-resolved photoemission as a one-particle probe of the occupied valence band structure and electron energy loss spectroscopy as a two-particle probe of electronic transitions across the gap to benchmark a single-particle model of the dielectric function ϵ(q, ω) against momentum dependent experimental measurements. This ansatz captures key aspects of the data surprisingly well. In particular, the energy region where substantial nesting occurs, which is at the origin of the strong light–matter interaction of thin transition metal dichalcogenides and crucial for the prominent C-exciton, is described well and spans a more complex exciton landscape than previously anticipated. Its local maxima in (q≠0,ω) space can be considered as dark excitons and might be relevant for higher order optical processes. Our study may lead to a more complete understanding of the optical properties of atomically thin transition metal dichalcogenides.
  • Item
    Electronic transitions and dielectric function tensor of a YMnO3 single crystal in the NIR-VUV spectral range
    (London [u.a.] : Royal Society of Chemistry, 2014) Schmidt-Grund, R.; Richter, S.; Ebbinghaus, S.G.; Lorenz, M.; Bundesmann, C.; Grundmann, M.
    We present optical properties in the near-infrared to vacuum-ultraviolet spectral range of hexagonal YMnO3. The high-quality (110)-oriented bulk single crystal was grown by the optical floating zone technique. We have determined the tensor of the dielectric function by means of Mueller matrix ellipsometry in the wide spectral range (0.5-9.15) eV. For the spectral range below 5.4 eV, we present much more precise data compared to previous reports. For higher energies no experimental reports were given previously. The experimental dielectric function of YMnO3 agrees generally with theoretical calculations. We found the well known transitions involving hybridized oxygen-Mn states and Mn-3d states to be spectrally localized with a homogeneous Lorentzian lineshape. At energies above these transitions, we observe pseudo-transparent points where for each of the principal diagonal elements of the dielectric function tensor the imaginary part approaches zero but at different photon energies. These are followed at the onset of the high-absorption spectral range by parabolic direct band-band transitions which have not been reported so far.