Search Results

Now showing 1 - 6 of 6
  • Item
    Dynamic Light Scattering on Nanoparticles in Microgravity in a Drop Tower
    (Heidelberg : Springer, 2022) Pyttlik, Andrea; Kuttich, Björn; Kraus, Tobias
    Gravity affects colloidal dispersions via sedimentation and convection. We used dynamic light scattering (DLS) to quantify the mobility of nanoparticles on ground and in microgravity. A DLS instrument was adapted to withstand the accelerations in a drop tower, and a liquid handling set-up was connected in order to stabilize the liquid temperature and enable rapid cooling or heating. Light scattering experiments were performed in the drop tower at ZARM (Bremen, Germany) during a microgravity interval of 9.1 s and compared to measurements on ground. Particle dynamics were analyzed at constant temperature and after a rapid temperature drop using a series of DLS measurements with 1 s integration time. We observed nanoparticles with average gold core diameters of 7.8 nm and non-polar oleylamine shells that were dispersed in tetradecane and had an average hydrodynamic diameter of 21 nm. The particles did not change their diameter in the observed temperature range. The particle dynamics inferred from DLS on ground and in microgravity were in good agreement, demonstrating the possibility to perform reliable DLS measurements in a drop tower.
  • Item
    Enabling the measurement of particle sizes in stirred colloidal suspensions by embedding dynamic light scattering into an automated probe head
    (Amsterdam [u.a.] : Elsevier Science, 2016) de Kanter, Martinus; Meyer-Kirschner, Julian; Viell, Jörn; Mitsos, Alexander; Kather, Michael; Pich, Andrij; Janzen, Christoph
    A novel probe head design is introduced, which enables in-line monitoring of particle sizes in undiluted stirred fluids using dynamic light scattering. The novel probe head separates a small sample volume of 0.65 ml from the bulk liquid by means of an impeller. In this sample volume, particle sizing is performed using a commercially available fiber-optical backscatter probe. While conventional light scattering measurements in stirred media fail due to the superposition of Brownian’ motion and forced convection, undistorted measurements are possible with the proposed probe head. One measurement takes approximately 30 s used for liquid exchange by rotation of the impeller and for collection of scattered light. The probe head is applied for in-line monitoring of the particle growth during microgel synthesis by precipitation polymerization in a one liter laboratory reactor. The in-line measurements are compared to off-line measurements and show a good agreement.
  • Item
    Amphiphilic block copolymers featuring a reversible hetero Diels-Alder linkage
    (London [u.a.] : Royal Society of Chemistry, 2014) Langer, M.; Brandt, J.; Lederer, A.; Goldmann, A.S.; Schacher, F.H.; Barner-Kowollik, C.
    The present article reports the preparation of a novel class of switchable amphiphilic diblock copolymers with a temperature switchable linkage. Reversible addition fragmentation chain transfer (RAFT) polymerization was used to synthesize the individual blocks: for the preparation of the non-polar block, i.e. poly(isoprene-co-styrene) (P(I-co-S)) (9200 g mol-1 ≤ M n ≤ 50000 g mol-1, 1.22 ≤ ≤ 1.36), a chain transfer agent (CTA, 3-((2-bromo-2-methylpropanoyl)oxy)propyl 2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoate) carrying a bromine group was employed, ready for subsequent cyclopentadienyl (Cp) transformation. For the preparation of the polar block, triethylene glycol methyl ether acrylate (TEGA) was polymerized (6600 g mol-1 ≤ Mn ≤ 35000 g mol-1, 1.12 ≤ ≤ 1.30) using a RAFT agent carrying a phosphoryl Z-group, which is able to undergo hetero Diels-Alder (HDA) ligation with Cp moieties. Both building blocks were conjugated at ambient temperature in the presence of ZnCl2 as catalyst yielding the amphiphilic block copolymer P(I-co-S)-b-PTEGA (16000 g mol-1 ≤ Mn ≤ 68000 g mol-1, 1.15 ≤ ≤ 1.32). To investigate the bonding/debonding capability of the HDA linkage, high temperature nuclear magnetic resonance (HT-NMR) spectroscopy, high temperature dynamic light scattering (HT-DLS) and high temperature size exclusion chromatography (HT-SEC) were carried out, evidencing that efficiently switchable amphiphilic block copolymers were generated (>4 cycles).
  • Item
    Cononsolvency of the responsive polymer poly(N-isopropylacrylamide) in water/methanol mixtures: a dynamic light scattering study of the effect of pressure on the collective dynamics
    (Berlin ; Heidelberg : Springer, 2022) Niebuur, Bart-Jan; Deyerling, André; Höfer, Nicole; Schulte, Alfons; Papadakis, Christine M.
    The collective dynamics of 25 wt% poly(N-isopropylacrylamide) (PNIPAM) solutions in water or an 80:20 v/v water/methanol mixture are investigated in the one-phase region in dependence on pressure and temperature using dynamic light scattering. Throughout, two dynamic modes are observed, the fast one corresponding to the relaxation of the chain segments within the polymer blobs and the slow one to the relaxation of the blobs. A pressure scan in the one-phase region on an aqueous solution at 34.0 °C, i.e., slightly below the maximum of the coexistence line, reveals that the dynamic correlation length of the fast mode increases when the left and the right branch of the coexistence line are approached. Thus, the chains are rather swollen far away from the coexistence line, but contracted near the phase transition. Temperature scans of solutions in neat H2O or in H2O/CD3OD at 0.1, 130, and 200 MPa reveal that the dynamic correlation length of the fast mode shows critical behavior. However, the critical exponents are significantly larger than the value predicted by mean-field theory for the static correlation length, ν = 0.5, and the exponent is significantly larger for the solution in the H2O/CD3OD mixture than in neat H2O.
  • Item
    Influence of the hydrophobicity of polyelectrolytes on polyelectrolyte complex formation and complex particle structure and shape
    (Basel : MDPI AG, 2011) Mende, M.; Schwarz, S.; Zschoche, S.; Petzold, G.; Janke, A.
    Polyelectrolyte complexes (PECs) were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene). Additionally, the n -/n + ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS) and atomic force microscopy (AFM). Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene). These findings could be proved by AFM. Fractal dimension (D), root mean square (RMS) roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.
  • Item
    SPION@polydehydroalanine hybrid particles
    (London : RSC Publishing, 2015) von der Lühe, Moritz; Günther, Ulrike; Weidner, Andreas; Gräfe, Christine; Clement, Joachim H.; Dutz, Silvio; Schacher, Felix H.
    It is generally accepted that a protein corona is rapidly formed upon exposure of nanoparticles to biological fluids and that both the amount and the composition of adsorbed proteins affect the dispersion properties of the resulting particles. Hereby, the net charge and overall charge density of the pristine nanoparticles are supposed to play a crucial role. In an attempt to control both charge and charge distribution, we report on the coating of superparamagnetic iron oxide nanoparticles (SPIONs) with different polyelectrolytes. Starting from orthogonally protected polydehydroalanine, the material can be easily transformed into a polyanion (poly(tert-butoxycarbonyl acrylic acid), PtBAA), polycation (poly(aminomethylacrylate), PAMA), or even a polyzwitterion (polydehydroalanine, PDha). While coating of SPIONs with PtBAA and PDha was shown to be successful, approaches using PAMA have failed so far. The dispersion properties of the resulting hybrid particles have been investigated using dynamic light scattering (DLS), zeta-potential, and TEM measurements – the amount of adsorbed polymer was quantified using vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA).