Search Results

Now showing 1 - 4 of 4
  • Item
    Length distributed measurement of temperature effects in Yb-doped fibers during pumping
    (Bellingham : SPIE, 2014) Leich, M.; Fiebrandt, J.; Schwuchow, A.; Jetschke, S.; Unger, S.; Jäger, M.; Rothhardt, M.; Bartelt, H.
    We demonstrate a distributed measurement technique to observe temperature changes along pumped Yb-doped fibers. This technique is based on an array of fiber Bragg gratings acting as a temperature sensor line. The Bragg gratings are inscribed directly into the Yb-doped fiber core using high-intensity ultrashort laser pulses and an interferometric setup. We studied the temperature evolution in differently co-doped Yb fibers during optical pumping and identified different effects contributing to the observed temperature increase. We found that preloading of fibers with hydrogen supports the formation of Yb2+ during UV irradiation and has a large impact on fiber temperature during pumping. The proposed technique can be applied to investigate the homogeneity of pump absorption in active fibers and to support spatially resolved photodarkening measurements.
  • Item
    Micro-structured fiber interferometer as sensitive temperature sensor
    (Heidelberg : Springer, 2013) Favero, F.C.; Becker, M.; Spittel, R.; Rothhardt, M.; Kobelke, J.; Bartelt, H.
    We report on a fast and sensitive temperature sensor using a micro-structured or photonic crystal fiber interferometer with a high germanium doped fiber core. The wavelength sensitivity for temperature variation was as high as δλ/δT= 78 pm/ C up to 500 C, which was 6 times more sensitive than the fiber Bragg grating temperature sensitivity of δλ/δT= 13 pm/ C at 1550 nm. The sensor device was investigated concerning the sensitivity characteristics and response time.
  • Item
    Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks
    (Basel : MDPI, 2009) Lindner, E.; Chojetztki, C.; Brueckner, S.; Becker, M.; Rothhardt, M.; Vlekken, J.; Bartelt, H.
    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. © 2009 by the authors.
  • Item
    Thermal tuning of a fiber-integrated Fabry-Pérot cavity
    (Washington, DC : Soc., 2021) Singer, Clemens; Goetz, Alexander; Prasad, Adarsh S.; Becker, Martin; Rothhardt, Manfred; Skoff, Sarah M.
    Here, we present the thermal tuning capability of an alignment-free, fiber-integrated Fabry-Pérot cavity. The two mirrors are made of fiber Bragg gratings that can be individually temperature stabilized and tuned. We show the temperature tuning of the resonance wavelength of the cavity without any degradation of the finesse and the tuning of the individual stop bands of the fiber Bragg gratings. This not only permits for the cavity’s finesse to be optimized post-fabrication but also makes this cavity applicable as a narrowband filter with a FWHM spectral width of 0.07 ± 0.02 pm and a suppression of more than -15 dB that can be wavelength tuned. Further, in the field of quantum optics, where strong light-matter interactions are desirable, quantum emitters can be coupled to such a cavity and the cavity effect can be reversibly omitted and re-established. This is particularly useful when working with solid-state quantum emitters where such a reference measurement is often not possible once an emitter has been permanently deposited inside a cavity.