Search Results

Now showing 1 - 10 of 14
  • Item
    Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
    (Heidelberg : Springer, 2012) Bierlich, J.; Kobelke, J.; Brand, D.; Kirsch, K.; Dellith, J.; Bartelt, H.
    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.
  • Item
    Side-view holographic endomicroscopy via a custom-terminated multimode fibre
    (Washington, DC : Soc., 2021) Silveira, Beatriz M.; Pikálek, Tomáš; Stibůrek, Miroslav; Ondráčková, Petra; Jákl, Petr; Leite, Ivo T.; Čižmár, Tomáš
    Microendoscopes based on optical fibres have recently come to the fore as promising candidates allowing in-vivo observations of otherwise inaccessible biological structures in animal models. Despite being still in its infancy, imaging can now be performed at the tip of a single multimode fibre, by relying on powerful holographic methods for light control. Fibre based endoscopy is commonly performed en face, resulting in possible damage of the specimen owing to the direct contact between the distal end of the probe and target. On this ground, we designed an all-fibre probe with an engineered termination that reduces compression and damage to the tissue under investigation upon probe insertion. The geometry of the termination brings the field of view to a plane parallel to the fibre’s longitudinal direction, conveying the probe with off-axis imaging capabilities. We show that its focusing ability also benefits from a higher numerical aperture, resulting in imaging with increased spatial resolution. The effect of probe insertion was investigated inside a tissue phantom comprising fluorescent particles suspended in agarose gel, and a comparison was established between the novel side-view probe and the standard en face fibre probe. This new concept paves the way to significantly less invasive deep-tissue imaging.
  • Item
    Observing distant objects with a multimode fiber-based holographic endoscope
    (Melville, NY : AIP Publishing, 2021) Leite, Ivo T.; Turtaev, Sergey; Boonzajer Flaes, Dirk E.; Čižmár, Tomáš
    Holographic wavefront manipulation enables converting hair-thin multimode optical fibers into minimally invasive lensless imaging instruments conveying much higher information densities than conventional endoscopes. Their most prominent applications focus on accessing delicate environments, including deep brain compartments, and recording micrometer-scale resolution images of structures in close proximity to the distal end of the instrument. Here, we introduce an alternative "far-field"endoscope capable of imaging macroscopic objects across a large depth of field. The endoscope shaft with dimensions of 0.2 × 0.4 mm2 consists of two parallel optical fibers: one for illumination and the other for signal collection. The system is optimized for speed, power efficiency, and signal quality, taking into account specific features of light transport through step-index multimode fibers. The characteristics of imaging quality are studied at distances between 20 mm and 400 mm. As a proof-of-concept, we provide imaging inside the cavities of a sweet pepper commonly used as a phantom for biomedically relevant conditions. Furthermore, we test the performance on a functioning mechanical clock, thus verifying its applicability in dynamically changing environments. With the performance reaching the standard definition of video endoscopes, this work paves the way toward the exploitation of minimally invasive holographic micro-endoscopes in clinical and diagnostics applications. © 2021 Author(s).
  • Item
    Length distributed measurement of temperature effects in Yb-doped fibers during pumping
    (Bellingham : SPIE, 2014) Leich, M.; Fiebrandt, J.; Schwuchow, A.; Jetschke, S.; Unger, S.; Jäger, M.; Rothhardt, M.; Bartelt, H.
    We demonstrate a distributed measurement technique to observe temperature changes along pumped Yb-doped fibers. This technique is based on an array of fiber Bragg gratings acting as a temperature sensor line. The Bragg gratings are inscribed directly into the Yb-doped fiber core using high-intensity ultrashort laser pulses and an interferometric setup. We studied the temperature evolution in differently co-doped Yb fibers during optical pumping and identified different effects contributing to the observed temperature increase. We found that preloading of fibers with hydrogen supports the formation of Yb2+ during UV irradiation and has a large impact on fiber temperature during pumping. The proposed technique can be applied to investigate the homogeneity of pump absorption in active fibers and to support spatially resolved photodarkening measurements.
  • Item
    Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks
    (Basel : MDPI, 2009) Lindner, E.; Chojetztki, C.; Brueckner, S.; Becker, M.; Rothhardt, M.; Vlekken, J.; Bartelt, H.
    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. © 2009 by the authors.
  • Item
    Raman imaging with a fiber-coupled multichannel spectrograph
    (Basel : MDPI AG, 2014) Schmälzlin, E.; Moralejo, B.; Rutowska, M.; Monreal-Ibero, A.; Sandin, C.; Tarcea, N.; Popp, J.; Roth, M.M.
    Until now, spatially resolved Raman Spectroscopy has required to scan a sample under investigation in a time-consuming step-by-step procedure. Here, we present a technique that allows the capture of an entire Raman image with only one single exposure. The Raman scattering arising from the sample was collected with a fiber-coupled high-performance astronomy spectrograph. The probe head consisting of an array of 20 × 20 multimode fibers was linked to the camera port of a microscope. To demonstrate the high potential of this new concept, Raman images of reference samples were recorded. Entire chemical maps were received without the need for a scanning procedure.
  • Item
    Diffusion and interface effects during preparation of all-solid microstructured fibers
    (Basel : MDPI AG, 2014) Kobelke, J.; Bierlich, J.; Wondraczek, K.; Aichele, C.; Pan, Z.; Unger, S.; Schuster, K.; Bartelt, H.
    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
  • Item
    Orders of magnitude loss reduction in photonic bandgap fibers by engineering the core surround
    (Washington, DC : Soc., 2021) Upendar, S.; Ando, R.F.; Schmidt, M.A.; Weiss, T.
    We demonstrate how to reduce the loss in photonic bandgap fibers by orders of magnitude by varying the radius of the corner strands in the core surround. As a fundamental working principle we find that changing the corner strand radius can lead to backscattering of light into the fiber core. Selecting an optimal corner strand radius can thus reduce the loss of the fundamental core mode in a specific wavelength range by almost two orders of magnitude when compared to an unmodified cladding structure. Using the optimal corner radius for each transmission window, we observe the low-loss behavior for the first and second bandgaps, with the losses in the second bandgap being even lower than that of the first one. Our approach of reducing the confinement loss is conceptually applicable to all kinds of photonic bandgap fibers including hollow core and all-glass fibers as well as on-chip light cages. Therefore, our concept paves the way to low-loss light guidance in such systems with substantially reduced fabrication complexity.
  • Item
    Polarization-resolved second-harmonic generation imaging through a multimode fiber
    (Washington, DC : OSA, 2021) Cifuentes, Angel; Pikálek, Tomáš; Ondráčková, Petra; Amezcua-Correa, Rodrigo; Antonio-Lopez, José Enrique; Čižmár, Tomáš; Trägårdh, Johanna
    Multimode fiber-based endoscopes have recently emerged as a tool for minimally invasive endoscopy in tissue, at depths well beyond the reach of multiphoton imaging. Here, we demonstrate label-free second-harmonic generation (SHG) microscopy through such a fiber endoscope. We simultaneously fully control the excitation polarization state and the spatial distribution of the light at the fiber tip, and we use this to implement polarization-resolved SHG imaging, which allows imaging and identification of structural proteins such as collagen and myosin. We image mouse tail tendon and heart tissue, employing the endoscope at depths up to 1 mm, demonstrating that we can differentiate these structural proteins. This method has the potential for enabling instant and in situ diagnosis of tumors and fibrotic conditions in sensitive tissue with minimal damage.
  • Item
    Strain sensitivity enhancement in suspended core fiber tapers
    (Heidelberg : Springer, 2013) André, R.M.; Silva, S.O.; Becker, M.; Schuster, K.; Rothardt, M.; Bartelt, H.; Marques, M.B.; Frazão, O.
    Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs.