Search Results

Now showing 1 - 2 of 2
  • Item
    A review on stretchable magnetic field sensorics
    (Bristol : IOP Publ., 2020) Melzer, M.; Makarov, D.; Schmidt, O.G.
    The current establishment of stretchable electronics to form a seamless link between soft or even living materials and the digital world is at the forefront of multidisciplinary research efforts, bridging physics, engineering and materials science. Magnetic functionalities can provide a sense of displacement, orientation or proximity to this novel formulation of electronics. This work reviews the recent development of stretchable magnetic field sensorics relying on the combination of metallic thin films revealing a giant magnetoresistance effect with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved by specific morphologic features (e.g. wrinkles or microcracks), which accommodate the applied tensile deformation while maintaining the electrical and magnetic integrity of the sensor device. The entire development, from the demonstration of the world's first elastically stretchable magnetic sensor to the realization of a technology platform for robust, ready-to-use elastic magnetosensorics is described. Soft giant magnetoresistive elements exhibiting the same sensing performance as on conventional rigid supports, but with fully strain invariant properties up to 270% stretching have been demonstrated. With their unique mechanical properties, these sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. Stretchable magnetoelectronic sensors can equip soft and epidermal electronic systems with navigation, orientation, motion tracking and touchless control capabilities. A variety of novel technologies, like electronic skins, smart textiles, soft robotics and actuators, active medical implants and soft consumer electronics will benefit from these new magnetic functionalities. © 2019 IOP Publishing Ltd.
  • Item
    Self-assembly of highly sensitive 3D magnetic field vector angular encoders
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Becker, C.; Karnaushenko, D.; Kang, T.; Karnaushenko, D.D.; Faghih, M.; Mirhajivarzaneh, A.; Schmidt, O.G.
    Novel robotic, bioelectronic, and diagnostic systems require a variety of compact and high-performance sensors. Among them, compact three-dimensional (3D) vector angular encoders are required to determine spatial position and orientation in a 3D environment. However, fabrication of 3D vector sensors is a challenging task associated with time-consuming and expensive, sequential processing needed for the orientation of individual sensor elements in 3D space. In this work, we demonstrate the potential of 3D self-assembly to simultaneously reorient numerous giant magnetoresistive (GMR) spin valve sensors for smart fabrication of 3D magnetic angular encoders. During the self-assembly process, the GMR sensors are brought into their desired orthogonal positions within the three Cartesian planes in a simultaneous process that yields monolithic high-performance devices. We fabricated vector angular encoders with equivalent angular accuracy in all directions of 0.14°, as well as low noise and low power consumption during high-speed operation at frequencies up to 1 kHz.