Search Results

Now showing 1 - 4 of 4
  • Item
    Experimental electronic structure of In2O3 and Ga2O3
    (Bristol : IOP, 2011) Janowitz, C.; Scherer, V.; Mohamed, M.; Krapf, A.; Dwelk, H.; Manzke, R.; Galazka, Z.; Uecker, R.; Irmscher, K.; Fornari, R.; Michling, M.; Schmeißer, D.; Weber, J.R.; Varley, J.B.; Van De Walle, C.G.
    Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.
  • Item
    Silicon Powder-Based Wafers for Low-Cost Photovoltaics: Laser Treatments and Nanowire Etching
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2018) Jia, G.; Plentz, J.; Gawlik, A.; Azar, A.S.; Stokkan, G.; Syvertsen, M.; Carvalho, P.A.; Dellith, J.; Dellith, A.; Andrä, G.; Ulyashin, A.
    In this study, laser-treated polycrystalline Si (pc-Si) wafers, fabricated by wire sawing of hot-pressed ingots sintered from Si powder, have been investigated. As-cut wafers and those with high-quality thin Si layers deposited on top of them by e-beam have been subjected to laser irradiation to clarify typical trends of structural modifications caused by laser treatments. Moreover, possibility to use laser-treated Si powder-based substrates for fabrication of advanced Si structures has been analysed. It is established that (i) Si powder-based wafers with thicknesses 180 μm can be fully (from the front to back side) or partly (subsurface region) remelted by a diode laser and grain sizes in laser-treated regions can be increased; (ii) a high-quality top layer can be fabricated by crystallization of an additional a-Si layer deposited by e-beam evaporation on top of the pc-Si; and (iii) silicon nanowires can be formed by metal-assisted wet chemical etching (MAWCE) of polished Si powder-based wafers and as-cut wafers irradiated with medium laser power, while a surface texturing on the as-cut pc-Si wafers occur, and no nanowires can form in the region subject to a liquid phase crystallization (LPC) caused by high-power laser treatments.
  • Item
    Recent progress in the development of β-Ga2O3 scintillator crystals grown by the Czochralski method
    (Washington, DC : OSA, 2021) Drozdowski, Winicjusz; Makowski, Michał; Witkowski, Marcin E.; Wojtowicz, Andrzej J.; Irmscher, Klaus; Schewski, Robert; Galazka, Zbigniew
    A high-quality bulk single crystal of β-Ga2O3 has been grown by the Czochralski method and its basic scintillation characteristics (light yield, energy resolution, proportionality, and scintillation decay times) have been investigated. All the samples cut from the crystal show promising scintillation yields between 8400 and 8920 ph/MeV, which is a noticeable step forward compared to previous studies. The remaining parameters, i.e. the energy resolution slightly above 10% (at 662 keV) and the scintillation mean decay time just under 1 μs, are at the same level as we have formerly recognized for β-Ga2O3. The proportionality of yield seems not to deviate from standards determined by other commercial scintillators.
  • Item
    Dynamics of graphene growth on a metal surface: A time-dependent photoemission study
    (Milton Park : Taylor & Francis, 2009) Grüneis, Alexander; Kummer, Kurt; Vyalikh, Denis V.
    Applying time-dependent photoemission we unravel the graphene growth process on a metallic surface by chemical vapor deposition (CVD). Graphene CVD growth is in stark contrast to the standard growth process of two-dimensional films because it is self-limiting and stops as soon as a monolayer of graphene has been synthesized. Most importantly, a novel phase of metastable graphene was discovered that is characterized by permanent and simultaneous construction and deconstruction. The high quality and large area graphene flakes are characterized by angle-resolved photoemission, proving that they are indeed monolayer and cover the whole 1×1 cm Ni(111) substrate. These findings are of high relevance to the intensive search for reliable synthesis methods for large graphene flakes of controlled layer number.