Search Results

Now showing 1 - 3 of 3
  • Item
    Deep decarbonisation of buildings energy services through demand and supply transformations in a 1.5°C scenario
    (Bristol : IOP Publ., 2021-5-12) Levesque, Antoine; Pietzcker, Robert C.; Baumstark, Lavinia; Luderer, Gunnar
    Buildings energy consumption is one of the most important contributors to greenhouse gas (GHG) emissions worldwide, responsible for 23% of energy-related CO2 emissions. Decarbonising the energy demand of buildings will require two types of strategies: first, an overall reduction in energy demand, which could, to some extent, be achieved at negative costs; and second through a reduction of the carbon content of energy via fuel switching and supply-side decarbonisation. This study assesses the contributions of each of these strategies for the decarbonisation of the buildings sector in line with a 1.5°C global warming. We show that in a 1.5°C scenario combining mitigation policies and a reduction of market failures in efficiency markets, 81% of the reductions in buildings emissions are achieved through the reduction of the carbon content of energy, while the remaining 19% are due to efficiency improvements which reduce energy demand by 31%. Without supply-side decarbonisation, efficiency improvements almost entirely suppress the doubling of emissions that would otherwise be expected, but fail to induce an absolute decline in emissions. Our modelling and scenarios show the impact of both climate change mitigation policies and of the alleviation of market failures pervading through energy efficiency markets. The results show that the reduction of the carbon content of energy through fuel switching and supply-side decarbonisation is of paramount importance for the decarbonisation of buildings.
  • Item
    Carbon dioxide removal technologies are not born equal
    (Bristol : IOP Publ., 2021-7-1) Strefler, Jessica; Bauer, Nico; Humpenöder, Florian; Klein, David; Popp, Alexander; Kriegler, Elmar
    Technologies for carbon dioxide removal (CDR) from the atmosphere have been recognized as an important part of limiting warming to well below 2 °C called for in the Paris Agreement. However, many scenarios so far rely on bioenergy in combination with carbon capture and storage as the only CDR technology. Various other options have been proposed, but have scarcely been taken up in an integrated assessment of mitigation pathways. In this study we analyze a comprehensive portfolio of CDR options in terms of their regional and temporal deployment patterns in climate change mitigation pathways and the resulting challenges. We show that any CDR option with sufficient potential can reduce the economic costs of achieving the 1.5 °C target substantially without increasing the temperature overshoot. CDR helps to reduce net CO2 emissions faster and achieve carbon neutrality earlier. The regional distribution of CDR deployment in cost-effective mitigation pathways depends on which options are available. If only enhanced weathering of rocks on croplands or re- and afforestation are available, Latin America and Asia cover nearly all of global CDR deployment. Besides fairness and sustainability concerns, such a regional concentration would require large international transfers and thus strong international institutions. In our study, the full portfolio scenario is the most balanced from a regional perspective. This indicates that different CDR options should be developed such that all regions can contribute according to their regional potentials.
  • Item
    Evaluating process-based integrated assessment models of climate change mitigation
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Wilson, Charlie; Guivarch, Céline; Kriegler, Elmar; van Ruijven, Bas; van Vuuren, Detlef P.; Krey, Volker; Schwanitz, Valeria Jana; Thompson, Erica L.
    Process-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models’ usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community.