Search Results

Now showing 1 - 4 of 4
  • Item
    Depth-Resolved Phase Analysis of Expanded Austenite Formed in Austenitic Stainless Steel
    (Basel : MDPI, 2020) Manova, Darina; Schlenz, Patrick; Gerlach, Jürgen W.; Mändl, Stephan
    Expanded austenite γN formed after nitrogen insertion into austenitic stainless steel and CoCr alloys is known as a hard and very wear resistant phase. Nevertheless, no single composition and lattice expansion can describe this phase with nitrogen in solid solution. Using in situ X-ray diffraction (XRD) during ion beam sputtering of expanded austenite allows a detailed depth-dependent phase analysis, correlated with the nitrogen depth profiles obtained by time-of-flight secondary ion mass spectrometry (ToF-SIMS) or glow discharge optical emission spectroscopy (GDOES). Additionally, in-plane XRD measurements at selected depths were performed for strain analysis. Surprisingly, an anomalous peak splitting for the (200) expanded peak was observed for some samples during nitriding and sputter etching, indicating a layered structure only for {200} oriented grains. The strain analysis as a function of depth and orientation of scattering vector (parallel/perpendicular to the surface) is inconclusive. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Thin film deposition using energetic ions
    (Basel : MDPI, 2010) Manova, D.; Gerlach, J.W.; Mändl, S.
    One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. © 2010 by the authors.
  • Item
    Increased biocompatibility and bioactivity after energetic PVD surface treatments
    (Basel : MDPI, 2009) Mändl, S.
    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes. © 2009 by the authors;.
  • Item
    Carbon and Neon Ion Bombardment Induced Smoothing and Surface Relaxation of Titania Nanotubes
    (Basel : MDPI, 2021) Kupferer, Astrid; Mensing, Michael; Lehnert, Jan; Mändl, Stephan; Mayr, Stefan G.
    Titania nanotube arrays with their enormous surface area are the subject of much attention in diverse fields of research. In the present work, we show that not only 60 keV and 150 keV ion bombardment of amorphous titania nanotube arrays yields defect creation within the tube walls, but it also changes the surface morphology: the surface relaxes and smoothens in accordance with a curvature-driven surface material’s transport mechanism, which is mediated by radiation-induced viscous flow or radiation-enhanced surface diffusion, while the nanotubes act as additional sinks for the particle surface currents. These effects occur independently of the ion species: both carbon and neon ion bombardments result in comparable surface relaxation responses initiated by an ion energy of 60 keV at a fluence of 1 × 1016 ions/cm2. Using atomic force microscopy and contact angle measurements, we thoroughly study the relaxation effects on the surface topography and surface free energy, respectively. Moreover, surface relaxation is accompanied by further amorphization in surface-near regions and a reduction in the mass density, as demonstrated by Raman spectroscopy and X-ray reflectivity. Since ion bombardment can be performed on global and local scales, it constitutes a versatile tool to achieve well-defined and tunable topographies and distinct surface characteristics. Hence, different types of nanotube arrays can be modified for various applications.