Search Results

Now showing 1 - 3 of 3
  • Item
    General scaling of maximum degree of synchronization in noisy complex networks
    (Bristol : Institute of Physics Publishing, 2014) Traxl, D.; Boers, N.; Kurths, J.
    The effects of white noise and global coupling strength on the maximum degree of synchronization in complex networks are explored. We perform numerical simulations of generic oscillator models with both linear and non-linear coupling functions on a broad spectrum of network topologies. The oscillator models include the Fitzhugh-Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model. The network topologies range from regular, random and highly modular networks to scale-free and small-world networks, with both directed and undirected edges. We then study the dependency of the maximum degree of synchronization on the global coupling strength and the noise intensity. We find a general scaling of the synchronizability, and quantify its validity by fitting a regression model to the numerical data.
  • Item
    Mathematical models as research data via flexiformal theory graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Kohlhase, Michael; Koprucki, Thomas; Müller, Dennis; Tabelow, Karsten
    Mathematical modeling and simulation (MMS) has now been established as an essential part of the scientific work in many disciplines. It is common to categorize the involved numerical data and to some extent the corresponding scientific software as research data. But both have their origin in mathematical models, therefore any holistic approach to research data in MMS should cover all three aspects: data, software, and models. While the problems of classifying, archiving and making accessible are largely solved for data and first frameworks and systems are emerging for software, the question of how to deal with mathematical models is completely open. In this paper we propose a solution to cover all aspects of mathematical models: the underlying mathematical knowledge, the equations, boundary conditions, numeric approximations, and documents in a flexiformal framework, which has enough structure to support the various uses of models in scientific and technology workflows. Concretely we propose to use the OMDoc/MMT framework to formalize mathematical models and show the adequacy of this approach by modeling a simple, but non-trivial model: van Roosbroecks drift-diffusion model for one-dimensional devices. This formalization and future extensions allows us to support the modeler by e.g. flexibly composing models, visualizing Model Pathway Diagrams, and annotating model equations in documents as induced from the formalized documents by flattening. This directly solves some of the problems in treating MMS as research data and opens the way towards more MKM services for models.
  • Item
    Model pathway diagrams for the representation of mathematical models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Koprucki, Thomas; Kohlhase, Michael; Tabelow, Karsten; Müller, Dennis; Rabe, Florian
    Mathematical models are the foundation of numerical simulation of optoelectronic devices. We present a concept for a machine-actionable as well as human-understandable representation of the mathematical knowledge they contain and the domain-specific knowledge they are based on. We propose to use theory graphs to formalize mathematical models and model pathway diagrams to visualize them. We illustrate our approach by application to the van Roosbroeck system describing the carrier transport in semiconductors by drift and diffusion. We introduce an approach for the block-based composition of models from simpler components.