Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement

2018, Fuglestvedt, J., Rogelj, J., Millar, R. J., Allen, M., Boucher, O., Cain, M., Forster, P. M., Kriegler, E., Shindell, D.

The main goal of the Paris Agreement as stated in Article 2 is ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C’. Article 4 points to this long-term goal and the need to achieve ‘balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on ‘greenhouse gas balance’ is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO2-equivalent emissions conventionally calculated using GWP100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO2) results in global temperatures remaining approximately constant once net-zero CO2-equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement.

Loading...
Thumbnail Image
Item

Mid-century emission pathways in Japan associated with the global 2 °C goal: national and globalmodels’ assessments based on carbon budgets

2019, Oshiro, Ken, Gi, Keii, Fujimori, Shinichiro, van Soest, Heleen L., Bertram, Christoph, Després, Jacques, Masui, Toshihiko, Rochedo, Pedro, Roelfsema, Mark, Vrontisi, Zoi

This study assesses Japan’s mid-century low-emission pathways using both national and global integrated assessment models in the common mitigation scenario framework, based on the carbon budgets corresponding to the global 2 Â°C goal. We examine high and low budgets, equal to global cumulative 1600 and 1000 Gt-CO2 (2011–2100) for global models, and 36 and 31 Gt-CO2 (2011–2050) in Japan for national models, based on the cost-effectiveness allocation performed by the global models. The impacts of near-term policy assumption, including the implementation and enhancement of the 2030 target of the nationally determined contribution (NDC), are also considered. Our estimates show that the low budget scenarios require a 75% reduction of CO2 emissions by 2050 below the 2010 level, which is nearly the same as Japan’s governmental 2050 goal of reducing greenhouse gas emissions by 80%. With regard to near-term actions, Japan’s 2030 target included in the NDC is on track to meet the high budget scenario, whereas it is falling short for the low budget scenario, which would require emission reductions immediately after 2020. Whereas models differ in the type of energy source on which they foresee Japan basing its decarbonization process (e.g., nuclear- or variable renewable energy-dependent), the large-scale deployment of low-carbon energy (nuclear, renewable, and carbon capture and storage) is shared across most models in both the high and low budget scenarios. By 2050, low-carbon energy represents 44–54% of primary energy and 86–97% of electricity supply in the high and low budget scenarios, respectively. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Negative emissions—Part 3: Innovation and upscaling

2018, Nemet, Gregory F., Callaghan, Max W., Creutzig, Felix, Fuss, Sabine, Hartmann, Jens, Hilaire, Jérôme, Lamb, William F., Minx, Jan C., Rogers, Sophia, Smith, Pete

We assess the literature on innovation and upscaling for negative emissions technologies (NETs) using a systematic and reproducible literature coding procedure. To structure our review, we employ the framework of sequential stages in the innovation process, with which we code each NETs article in innovation space. We find that while there is a growing body of innovation literature on NETs, 59% of the articles are focused on the earliest stages of the innovation process, 'research and development' (R&D). The subsequent stages of innovation are also represented in the literature, but at much lower levels of activity than R&D. Distinguishing between innovation stages that are related to the supply of the technology (R&D, demonstrations, scale up) and demand for the technology (demand pull, niche markets, public acceptance), we find an overwhelming emphasis (83%) on the supply side. BECCS articles have an above average share of demand-side articles while direct air carbon capture and storage has a very low share. Innovation in NETs has much to learn from successfully diffused technologies; appealing to heterogeneous users, managing policy risk, as well as understanding and addressing public concerns are all crucial yet not well represented in the extant literature. Results from integrated assessment models show that while NETs play a key role in the second half of the 21st century for 1.5 °C and 2 °C scenarios, the major period of new NETs deployment is between 2030 and 2050. Given that the broader innovation literature consistently finds long time periods involved in scaling up and deploying novel technologies, there is an urgency to developing NETs that is largely unappreciated. This challenge is exacerbated by the thousands to millions of actors that potentially need to adopt these technologies for them to achieve planetary scale. This urgency is reflected neither in the Paris Agreement nor in most of the literature we review here. If NETs are to be deployed at the levels required to meet 1.5 °C and 2 °C targets, then important post-R&D issues will need to be addressed in the literature, including incentives for early deployment, niche markets, scale-up, demand, and—particularly if deployment is to be hastened—public acceptance.

Loading...
Thumbnail Image
Item

Predicting Paris: Multi-Method Approaches to Forecast the Outcomes of Global Climate Negotiations

2016, Sprinz, Detlef F., Bueno de Mesquita, Bruce, Kallbekken, Steffen, Stokman, Frans, Sælen, Håkon, Thomson, Robert

We examine the negotiations held under the auspices of the United Nations Framework Convention of Climate Change in Paris, December 2015. Prior to these negotiations, there was considerable uncertainty about whether an agreement would be reached, particularly given that the world’s leaders failed to do so in the 2009 negotiations held in Copenhagen. Amid this uncertainty, we applied three different methods to predict the outcomes: an expert survey and two negotiation simulation models, namely the Exchange Model and the Predictioneer’s Game. After the event, these predictions were assessed against the coded texts that were agreed in Paris. The evidence suggests that combining experts’ predictions to reach a collective expert prediction makes for significantly more accurate predictions than individual experts’ predictions. The differences in the performance between the two different negotiation simulation models were not statistically significant.

Loading...
Thumbnail Image
Item

Inconsistencies when applying novel metrics for emissions accounting to the Paris agreement

2019, Schleussner, Carl-Friedrich, Nauels, Alexander, Schaeffer, Michiel, Hare, William, Rogelj, Joeri

Addressing emissions of non-CO2 greenhouse gases (GHGs) is an integral part of efficient climate change mitigation and therefore an essential part of climate policy. Metrics are used to aggregate and compare emissions of short- and long-lived GHGs and need to account for the difference in both magnitude and persistence of their climatic effects. Different metrics describe different approaches and perspectives, and hence yield different numerical estimates for aggregated GHG emissions. When interpreting GHG emission reduction targets, being mindful of the underlying metrical choices thus proves to be essential. Here we present the impact a recently proposed GHG metric related to the concept of CO2 forcing-equivalent emissions (called GWP*) would have on the internal consistency and environmental integrity of the Paris Agreement. We show that interpreting the Paris Agreement goals in a metric like GWP* that is significantly different from the standard metric used in the IPCC Fifth Assessment Report can lead to profound inconsistencies in the mitigation architecture of the Agreement. It could even undermine the integrity of the Agreement's mitigation target altogether by failing to deliver net-zero CO2 emissions and therewith failing to ensure warming is halted. Our results indicate that great care needs to be taken when applying new concepts that appear scientifically favourable to a pre-existing climate policy context.

Loading...
Thumbnail Image
Item

Unintentional unfairness when applying new greenhouse gas emissions metrics at country level

2019, Rogelj, Joeri, Schleussner, Carl-Friedrich

The 2015 Paris Agreement sets out that rapid reductions in greenhouse gas (GHG) emissions are needed to keep global warming to safe levels. A new approach (known as GWP*) has been suggested to compare contributions of long- and short-lived GHGs, providing a close link between cumulative CO2-equivalent emissions and total warming. However, comparison factors for non-CO2 GHGs under the GWP* metric depend on past emissions, and hence raise questions of equity and fairness when applied at any but the global level. The use of GWP* would put most developing countries at a disadvantage compared to developed countries, because when using GWP* countries with high historical emissions of short-lived GHGs are exempted from accounting for avoidable future warming that is caused by sustaining these emissions. We show that when various established equity or fairness criteria are applied to GWP* (defined here as eGWP*), perceived national non-CO2 emissions vary by more than an order of magnitude, particularly in countries with high methane emissions like New Zealand. We show that national emission estimates that use GWP* are very sensitive to arbitrary choices made by countries and therewith facilitate the creation of loopholes when CO2-equivalent emissions based on the GWP* concept are traded between countries that use different approaches. In light of such equity-dependent accounting differences, GHG metrics like GWP* should only be used at the global level. A common, transparent and equity-neutral accounting metric is vital for the Paris Agreement's effectiveness and its environmental integrity.

Loading...
Thumbnail Image
Item

Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems

2020, Ito, Akihiko, Reyer, Christopher P. O., Gädeke, Anne, Ciais, Philippe, Chang, Jinfeng, Chen, Min, François, Louis, Forrest, Matthew, Hickler, Thomas, Ostberg, Sebastian, Shi, Hao, Thiery, Wim, Tian, Hanqin

Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with the less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.

Loading...
Thumbnail Image
Item

Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change

2019, Shiogama, Hideo, Hasegawa, Tomoko, Fujimori, Shinichiro, Murakami, Daisuke, Takahashi, Kiyoshi, Tanaka, Katsumasa, Emori, Seita, Kubota, Izumi, Abe, Manabu, Imada, Yukiko, Watanabe, Masahiro, Mitchell, Daniel, Schaller, Nathalie, Sillmann, Jana, Fischer, Erich M., Scinocca, John F., Bethke, Ingo, Lierhammer, Ludwig, Takakura, Jun’ya, Trautmann, Tim, Döll, Petra, Ostberg, Sebastian, Müller Schmied, Hannes, Saeed, Fahad, Schleussner, Carl-Friedrich

Clarifying characteristics of hazards and risks of climate change at 2 °C and 1.5 °C global warming is important for understanding the implications of the Paris Agreement. We perform and analyze large ensembles of 2 °C and 1.5 °C warming simulations. In the 2 °C runs, we find substantial increases in extreme hot days, heavy rainfalls, high streamflow and labor capacity reduction related to heat stress. For example, about half of the world's population is projected to experience a present day 1-in-10 year hot day event every other year at 2 °C warming. The regions with relatively large increases of these four hazard indicators coincide with countries characterized by small CO2 emissions, low-income and high vulnerability. Limiting global warming to 1.5 °C, compared to 2 °C, is projected to lower increases in the four hazard indicators especially in those regions.