Search Results

Now showing 1 - 3 of 3
  • Item
    Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure
    (München : European Geopyhsical Union, 2012) Komppula, M.; Mielonen, T.; Arola, A.; Korhonen, K.; Lihavainen, H.; Hyvärinen, A.-P.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; Müller, D.; Panwar, T.S.; Hooda, R.K.; Sharma, V.P.; Kerminen, V.-M.; Lehtinen, K.E.J.; Viisanen, Y.
    One year of multi-wavelength (3 backscatter + 2 extinction + 1 depolarization) Raman lidar measurements at Gual Pahari, close to New Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared to other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.
  • Item
    Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination
    (München : European Geopyhsical Union, 2010) Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S.
    The potential of a new generation of ceilometer instruments for aerosol monitoring has been studied in the Ceilometer Lidar Comparison (CLIC) study. The used ceilometer was developed by Jenoptik, Germany, and is designed to find both thin cirrus clouds at tropopause level and aerosol layers at close ranges during day and night-time. The comparison study was performed to determine up to which altitude the ceilometers are capable to deliver particle backscatter coefficient profiles. For this, the derived ceilometer profiles are compared to simultaneously measured lidar profiles at the same wavelength. The lidar used for the comparison was the multi-wavelengths Raman lidar PollyXT. To demonstrate the capabilities and limits of ceilometers for the derivation of particle backscatter coefficient profiles from their measurements two examples of the comparison results are shown. Two cases, a daytime case with high background noise and a less noisy night-time case, are chosen. In both cases the ceilometer profiles compare well with the lidar profiles in atmospheric structures like aerosol layers or the boundary layer top height. However, the determination of the correct magnitude of the particle backscatter coefficient needs a calibration of the ceilometer data with an independent measurement of the aerosol optical depth by a sun photometer. To characterizes the ceilometers signal performance with increasing altitude a comprehensive signal-to-noise ratio study was performed. During daytime the signal-to-noise ratio is higher than 1 up to 4–5 km depending on the aerosol content. In our night-time case the SNR is higher than 1 even up to 8.5 km, so that also aerosol layers in the upper troposphere had been detected by the ceilometer.
  • Item
    Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles
    (München : European Geopyhsical Union, 2017) Mamouri, Rodanthi-Elisavet; Ansmann, Albert
    We applied the recently introduced polarization lidar–photometer networking (POLIPHON) technique for the first time to triple-wavelength polarization lidar measurements at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the new, extended approach to separate even the fine and coarse dust backscatter fractions. We show that the traditional and the advanced method are compatible and lead to a consistent set of dust and non-dust profiles at simplified, less complex aerosol layering and mixing conditions as is the case over the remote tropical Atlantic. To derive dust mass concentration profiles from the lidar observations, trustworthy extinction-to-volume conversion factors for fine, coarse, and total dust are needed and obtained from an updated, extended Aerosol Robotic Network sun photometer data analysis of the correlation between the fine, coarse and total dust volume concentration and the respective fine, coarse, and total dust extinction coefficient for all three laser wavelengths. Conversion factors (total volume to extinction) for pure marine aerosol conditions and continental anthropogenic aerosol situations are presented in addition. As a new feature of the POLIPHON data analysis, the Raman lidar method for particle extinction profiling is used to identify the aerosol type (marine or anthropogenic) of the non-dust aerosol fraction. The full POLIPHON methodology was successfully applied to a SALTRACE case and the results are discussed. We conclude that the 532 nm polarization lidar technique has many advantages in comparison to 355 and 1064 nm polarization lidar approaches and leads to the most robust and accurate POLIPHON products.