Search Results

Now showing 1 - 2 of 2
  • Item
    Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates
    (Basel : MDPI, 2022) Šutka, Andris; Mežule, Linda; Denisova, Viktorija; Meier-Haack, Jochen; Kulkarni, Akshay; Bitina, Sanda; Smits, Krisjanis; Vihodceva, Svetlana
    Flexible antibacterial materials have gained utmost importance in protection from the distribution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibacterial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene, poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer was obtained when toluene was a solvent for the polymer substrates, namely polystyrene and poly(ethylene-co-vinyl acetate). These coatings show high antibacterial efficiency causing >5 log decrease in the viable counts of Gram-negative bacteria Escherichia. coli and Gram-positive bacteria Staphylococcus aureus in 120 min. Even after tapping these coated surfaces 500 times, the antibacterial properties remained unchanged, showing that the coating obtained by the presented method is very robust. In contrast to the above findings, the coatings are unstable when toluene is not a solvent for the substrate.
  • Item
    Clinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Host
    (Basel : MDPI, 2019) Tuchscherr, Lorena; Pöllath, Christine; Siegmund, Anke; Deinhardt-Emmer, Stefanie; Hoerr, Verena; Svensson, Carl-Magnus; Figge, Marc Thilo; Monecke, Stefan; Löffler, Bettina
    Staphylococcus aureus colonizes epithelial surfaces, but it can also cause severe infections. The aim of this work was to investigate whether bacterial virulence correlates with defined types of tissue infections. For this, we collected 10–12 clinical S. aureus strains each from nasal colonization, and from patients with endoprosthesis infection, hematogenous osteomyelitis, and sepsis. All strains were characterized by genotypic analysis, and by the expression of virulence factors. The host–pathogen interaction was studied through several functional assays in osteoblast cultures. Additionally, selected strains were tested in a murine sepsis/osteomyelitis model. We did not find characteristic bacterial features for the defined infection types; rather, a wide range in all strain collections regarding cytotoxicity and invasiveness was observed. Interestingly, all strains were able to persist and to form small colony variants (SCVs). However, the low-cytotoxicity strains survived in higher numbers, and were less efficiently cleared by the host than the highly cytotoxic strains. In summary, our results indicate that not only destructive, but also low-cytotoxicity strains are able to induce infections. The low-cytotoxicity strains can successfully survive, and are less efficiently cleared from the host than the highly cytotoxic strains, which represent a source for chronic infections. The understanding of this interplay/evolution between the host and the pathogen during infection, with specific attention towards low-cytotoxicity isolates, will help to optimize treatment strategies for invasive and therapy-refractory infection courses.