Search Results

Now showing 1 - 3 of 3
  • Item
    Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures
    (Amsterdam [u.a.] : Elsevier Science, 2019) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values.
  • Item
    Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing
    (Basel : MDPI, 2021-3-15) Silva, Mariana M.; Lopes, Paulo E.; Li, Yilong; Pötschke, Petra; Ferreira, Fernando N.; Paiva, Maria C.
    Polylactic acid (PLA) is a bio-based, biodegradable polymer that presents high potential for biomedical and sensing applications. Ongoing works reported in the literature concern mainly applications based on 3D printing, while textile applications are hindered by the limited flexibility of PLA and its composite filaments. In the present work, PLA/multiwall carbon nanotube (MWCNT) composite filaments were produced with enhanced flexibility and electrical conductivity, which may be applied on a textile structure. A biodegradable plasticizer was incorporated in the nanocomposites, aiming at improving MWCNT dispersion and increasing the flexibility of the filaments. Filaments were produced with a range of compositions and their morphology was characterized as well as their thermal, thermomechanical, and electrical properties. Selected compositions were tested for sensing activity using saturated acetone vapor, demonstrating a suitable response and potential for the application in fabrics with sensing capacity.
  • Item
    Smart cellulose fibers coated with carbon nanotube networks
    (Basel : MDPI AG, 2014) Qi, H.; Liu, J.; Mäder, E.
    Smart multi-walled carbon nanotube (MWCNT)-coated cellulose fibers with a unique sensing ability were manufactured by a simple dip coating process. The formation of electrically-conducting MWCNT networks on cellulose mono- and multi-filament fiber surfaces was confirmed by electrical resistance measurements and visualized by scanning electron microscopy. The interaction between MWCNT networks and cellulose fiber was investigated by Raman spectroscopy. The piezoresistivity of these fibers for strain sensing was investigated. The MWCNT-coated cellulose fibers exhibited a unique linear strain-dependent electrical resistance change up to 18% strain, with good reversibility and repeatability. In addition, the sensing behavior of these fibers to volatile molecules (including vapors of methanol, ethanol, acetone, chloroform and tetrahydrofuran) was investigated. The results revealed a rapid response, high sensitivity and good reproducibility for these chemical vapors. Besides, they showed good selectivity to different vapors. It is suggested that the intrinsic physical and chemical features of cellulose fiber, well-formed MWCNT networks and favorable MWCNT-cellulose interaction caused the unique and excellent sensing ability of the MWCNT-coated cellulose fibers, which have the potential to be used as smart materials.