Search Results

Now showing 1 - 2 of 2
  • Item
    Constructing proxy records from age models (COPRA)
    (München : European Geopyhsical Union, 2012) Breitenbach, S.F.M.; Rehfeld, K.; Goswami, B.; Baldin, J.U.L.; Ridley, H.E.; Kennett, D.J.; Prufer, K.M.; Aquino, V.V.; Asmerom, Y.; Polyak, V.J.; Cheng, H.; Kurths, J.; Marwan, N.
    Reliable age models are fundamental for any palaeoclimate reconstruction. Available interpolation procedures between age control points are often inadequately reported, and very few translate age uncertainties to proxy uncertainties. Most available modeling algorithms do not allow incorporation of layer counted intervals to improve the confidence limits of the age model in question. We present a framework that allows detection and interactive handling of age reversals and hiatuses, depth-age modeling, and proxy-record reconstruction. Monte Carlo simulation and a translation procedure are used to assign a precise time scale to climate proxies and to translate dating uncertainties to uncertainties in the proxy values. The presented framework allows integration of incremental relative dating information to improve the final age model. The free software package COPRA1.0 facilitates easy interactive usage.
  • Item
    Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost
    (Amsterdam : Elsevier, 2021) Yin, Hao; Brauer, Michael; Zhang, Junfeng (Jim); Cai, Wenjia; Navrud, Ståle; Burnett, Richard; Howard, Courtney; Deng, Zhu; Kammen, Daniel M.; Schellnhuber, Hans Joachim; Chen, Kai; Kan, Haidong; Chen, Zhan-Ming; Chen, Bin; Zhang, Ning; Mi, Zhifu; Coffman, D'Maris; Cohen, Aaron J.; Guan, Dabo; Zhang, Qiang; Gong, Peng; Liu, Zhu
    Background: The health impacts of ambient air pollution impose large costs on society. Although all people are exposed to air pollution, the older population (ie, those aged ≥60 years) tends to be disproportionally affected. As a result, there is growing concern about the health impacts of air pollution as many countries undergo rapid population ageing. We investigated the spatial and temporal variation in the economic cost of deaths attributable to ambient air pollution and its interaction with population ageing from 2000 to 2016 at global and regional levels. Methods: In this global analysis, we developed an age-adjusted measure of the value of a statistical life-year (VSLY) to estimate the economic cost of deaths attributable to ambient PM2·5 pollution using Global Burden of Diseases, Injuries, and Risk Factors Study 2017 data and country-level socioeconomic information. First, we estimated the global age-specific and cause-specific mortality and years of life lost (YLLs) attributable to PM2·5 pollution using the global exposure mortality model and global estimates of exposure at 0·1° × 0·1° (about 11 km × 11 km at the equator) resolution. Second, for each year between 2000 and 2016, we translated the YLLs within each age group into a health-related cost using a country-specific, age-adjusted measure of VSLY. Third, we decomposed the major driving factors that contributed to the temporal change in health costs related to PM2·5. Finally, we did a sensitivity test to analyse the variability of the estimated health costs to four alternative valuation measures. We identified the uncertainty intervals (UIs) from 1000 draws of the parameters and concentration–response functions by age, cause, country, and year. All economic values are reported in 2011 purchasing power parity-adjusted US dollars. All simulations were done with R, version 3.6.0. Findings: Globally, in 2016, PM2·5 was estimated to have caused 8·42 million (95% UI 6·50–10·52) attributable deaths, which was associated with 163·68 million (116·03–219·44) YLLs. In 2016, the global economic cost of deaths attributable to ambient PM2·5 pollution for the older population was US$2·40 trillion (1·89–2·93) accounting for 59% (59–60) of the cost for the total population ($4·09 trillion [3·19–5·05]). The economic cost per capita for the older population was $2739 (2160–3345) in 2016, which was 10 times that of the younger population (ie, those aged <60 years). By assessing the factors that contributed to economic costs, we found that increases in these factors changed the total economic cost by 77% for gross domestic product (GDP) per capita, 21% for population ageing, 16% for population growth, −41% for age-specific mortality, and −0·4% for PM2·5 exposure. Interpretation: The economic cost of ambient PM2·5 borne by the older population almost doubled between 2000 and 2016, driven primarily by GDP growth, population ageing, and population growth. Compared with younger people, air pollution leads to disproportionately higher health costs among older people, even after accounting for their relatively shorter life expectancy and increased disability. As the world's population is ageing, the disproportionate health cost attributable to ambient PM2·5 pollution potentially widens the health inequities for older people. Countries with severe air pollution and rapid ageing rates need to take immediate actions to improve air quality. In addition, strategies aimed at enhancing health-care services, especially targeting the older population, could be beneficial for reducing the health costs of ambient air pollution. Funding: National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Qiushi Foundation.