Search Results

Now showing 1 - 4 of 4
  • Item
    Primary versus secondary contributions to particle number concentrations in the European boundary layer
    (München : European Geopyhsical Union, 2011) Reddington, C.L.; Carslaw, K.S.; Spracklen, D.V.; Frontoso, M.G.; Collins, L.; Merikanto, J.; Minikin, A.; Hamburger, T.; Coe, H.; Kulmala, M.; Aalto, P.; Flentje, H.; Plass-Dülmer, C.; Birmili, W.; Wiedensohler, A.; Wehner, B.; Tuch, T.; Sonntag, A.; O'Dowd, C.D.; Jennings, S.G.; Dupuy, R.; Baltensperger, U.; Weingartner, E.; Hansson, H.-C.; Tunved, P.; Laj, P.; Sellegri, K.; Boulon, J.; Putaud, J.-P.; Gruening, C.; Swietlicki, E.; Roldin, P.; Henzing, J.S.; Moerman, M.; Mihalopoulos, N.; Kouvarakis, G.; Ždímal, V.; Zíková, N.; Marinoni, A.; Bonasoni, P.; Duchi, R.
    It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.
  • Item
    Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga
    (München : European Geopyhsical Union, 2013) Chi, X.; Winderlich, J.; Mayer, J.-C.; Panov, A.V.; Heimann, M.; Birmili, W.; Heintzenberg, J.; Cheng, Y.; Andreae, M.O.
    Siberia is one of few continental regions in the Northern Hemisphere where the atmosphere may sometimes approach pristine background conditions. We present the time series of aerosol and carbon monoxide (CO) measurements between September 2006 and December 2011 at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E). We investigate the seasonal, weekly and diurnal variations of aerosol properties (including absorption and scattering coefficients and derived parameters, such as equivalent black carbon (BCe), Ångström exponent, single scattering albedo, and backscattering ratio) and the CO mixing ratios. Criteria were established to distinguish polluted from near-pristine air masses, providing quantitative characteristics for each type. Depending on the season, 23–36% of the sampling time at ZOTTO was found to be representative of a clean atmosphere. The summer pristine data indicate that primary biogenic and secondary organic aerosol formation are quite strong particle sources in the Siberian taiga. The summer seasons 2007–2008 were dominated by an Aitken mode around 80 nm size, whereas the summer 2009 with prevailing easterly winds produced particles in the accumulation mode around 200 nm size. We found these differences to be mainly related to air temperature, through its effect on the production rates of biogenic volatile organic compounds (VOC) precursor gases. In winter, the particle size distribution peaked at 160 nm, and the footprint of clean background air was characteristic for aged particles from anthropogenic sources at great distances from ZOTTO and diluted biofuel burning emissions from domestic heating. The wintertime polluted air originates mainly from large cities south and southwest of the site; these particles have a dominant mode around 100 nm, and the ΔBCe / ΔCO ratio of 7–11 ng m−3 ppb−1 suggests dominant contributions from coal and biofuel burning for heating. During summer, anthropogenic emissions are the dominant contributor to the pollution particles at ZOTTO, while only 12% of the polluted events are classified as biomass-burning-dominated, but then often associated with extremely high CO concentrations and aerosol absorption coefficients. Two biomass-burning case studies revealed different ΔBCe / ΔCO ratios from different fire types, with the agricultural fires in April~2008 yielding a very high ratio of 21 ng m−3 ppb−1. Overall, we find that anthropogenic sources dominate the aerosol population at ZOTTO most of the time, even during nominally clean episodes in winter, and that near-pristine conditions are encountered only in the growing season and then only episodically.
  • Item
    Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: Results from CARES
    (München : European Geopyhsical Union, 2012) Setyan, A.; Zhang, Q.; Merkel, M.; Knighton, W.B.; Sun, Y.; Song, C.; Shilling, J.E.; Onasch, T.B.; Herndon, S.C.; Worsnop, D.R.; Fast, J.D.; Zaveri, R.A.; Berg, L.K.; Wiedensohler, A.; Flowers, B.A.; Dubey, M.K.; Subramanian, R.
    An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed during the Carbonaceous Aerosols and Radiative Effects Study (CARES) that took place in northern California in June 2010. We present results obtained at Cool (denoted as the T1 site of the project) in the foothills of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. During this study, the average mass loading of submicrometer particles (PM1) was 3.0 μg m−3, dominated by organics (80%) and sulfate (9.9%). The organic aerosol (OA) had a nominal formula of C1H1.38N0.004OM0.44, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two distinct oxygenated OA factors were identified via Positive matrix factorization (PMF) of the high-resolution mass spectra of organics. The more oxidized MO-OOA (O/C = 0.54) was interpreted as a surrogate for secondary OA (SOA) influenced by biogenic emissions whereas the less oxidized LO-OOA (O/C = 0.42) was found to represent SOA formed in photochemically processed urban emissions. LO-OOA correlated strongly with ozone and MO-OOA correlated well with two 1st generation isoprene oxidation products (methacrolein and methyl vinyl ketone), indicating that both SOAs were relatively fresh. A hydrocarbon like OA (HOA) factor was also identified, representing primary emissions mainly due to local traffic. On average, SOA (= MO-OOA + LO-OOA) accounted for 91% of the total OA mass and 72% of the PM1 mass observed at Cool. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM1 mass loading was considerably higher in urban plumes than in air masses dominated by biogenic SOA. The change in OA mass relative to CO (ΔOA/ΔCO) varied in the range of 5-196 μg m−3 ppm−1, reflecting large variability in SOA production. The highest ΔOA/ΔCO was reached when air masses were dominated by anthropogenic emissions in the presence of a high concentration of biogenic volatile organic compounds (BVOCs). This ratio, which was 97 μg m−3 ppm−1 on average, was much higher than when urban plumes arrived in a low BVOC environment (~36 μg m−3 ppm−1) or during other periods dominated by biogenic SOA (35 μg m−3 ppm−1). These results demonstrate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.
  • Item
    Infrequent new particle formation over the remote boreal forest of Siberia
    (Amsterdam [u.a.] : Elsevier Science, 2018) Wiedensohler, A.; Ma, N.; Birmili, W.; Heintzenberg, J.; Ditas, F.; Andreae, M.O.; Panov, A.
    Aerosol particle number size distributions (PNSD) were investigated to verify, if extremely low-volatility organic vapors (ELVOC) from natural sources alone could induce new particle formation and growth events over the remote boreal forest region of Siberia, hundreds of kilometers away from significant anthropogenic sources. We re-evaluated observations determined at a height of 300 m of the remote observatory ZOTTO (Zotino Tall Tower Observatory, http://www.zottoproject.org). We found that new particle formation events occurred only on 11 days in a 3-year period, suggesting that homogeneous nucleation with a subsequent condensational growth could not be the major process, maintaining the particle number concentration in the planetary boundary layer of the remote boreal forest area of Siberia. © 2018 Elsevier Ltd