Search Results

Now showing 1 - 7 of 7
  • Item
    Phase Formation, Microstructure and Mechanical Properties of Mg67Ag33 as Potential Biomaterial
    (Basel : MDPI, 2021) Kosiba, Konrad; Prashanth, Konda Gokuldoss; Scudino, Sergio
    The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.
  • Item
    Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization
    (Basel : MDPI AG, 2014) Gabler, C.; Zietz, C.; Göhler, R.; Fritsche, A.; Lindner, T.; Haenle, M.; Finke, B.; Meichsner, J.; Lenz, S.; Frerich, B.; Lüthen, F.; Nebe, J.B.; Bader, R.
    By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.
  • Item
    Geometry-Driven Cell Organization Determines Tissue Growths in Scaffold Pores: Consequences for Fibronectin Organization
    (San Francisco, CA : Public Library of Science, 2013) Joly, P.; Duda, G.N.; Schöne, M.; Welzel, P.B.; Freudenberg, U.; Werner, C.; Petersen, A.
    To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM). Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores) that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1) a simple geometric description predicts cellular organization during pore filling at the cell level and that 2) pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel) were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01) and reduced once the pores were closed (ρ = 0.26±0.04) indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.
  • Item
    Sublethal injury and Viable but Non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes
    (Lausanne : Frontiers Media S. A, 2018) Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H.
    The viable but non-culturable (VBNC) state, as well as sublethal injury of microorganisms pose a distinct threat to food safety, as the use of traditional, culture-based microbiological analyses might lead to an underestimation or a misinterpretation of the product's microbial status and recovery phenomena of microorganisms may occur. For thermal treatments, a large amount of data and experience is available and processes are designed accordingly. In case of innovative inactivation treatments, however, there are still several open points with relevance for the investigation of inactivation mechanisms as well as for the application and validation of the preservation processes. Thus, this paper presents a comprehensive compilation of non-thermal preservation technologies, i.e., high hydrostatic pressure (HHP), pulsed electric fields (PEFs), pulsed light (PL), and ultraviolet (UV) radiation, as well as cold plasma (CP) treatments. The basic technological principles and the cellular and molecular mechanisms of action are described. Based on this, appropriate analytical methods are outlined, i.e., direct viable count, staining, and molecular biological methods, in order to enable the differentiation between viable and dead cells, as well as the possible occurrence of an intermediate state. Finally, further research needs are outlined.
  • Item
    P-N junction-based Si biochips with ring electrodes for novel biosensing applications
    (Basel : MDPI, 2019) Kiani, Mahdi; Du, Nan; Vogel, Manja; Raff, Johannes; Hübner, Uwe; Skorupa, Ilona; Bürger, Danilo; Schulz, Stefan E.; Schmidt, Oliver G.; Schmidt, Heidemarie
    In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.
  • Item
    Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension
    (Columbus, Ohio : American Chemical Society, 2019) Licht, Christopher; Rose, Jonas C.; Anarkoli, Abdolrahman Omidinia; Blondel, Delphine; Roccio, Marta; Haraszti, Tamás; Gehlen, David B.; Hubbell, Jeffrey A.; Lutolf, Matthias P.; De Laporte, Laura
    An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.
  • Item
    Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Chae, Soo Sang; Jung, Joo Hyun; Choi, Won Jin; Park, Joung Kyu; Baik, Hong Koo; Jung, Jongjin; Ko, Hyuk Wan
    Precise modulation of polymer brush in its thickness and grafting density can cause unexpected cell behaviors and regulated bioactivities. Herein, a nanoscale poly(dimethylsiloxane) (PDMS) brush was employed to use as a controllable material for cell adhesion. Facile fabrication of ultrathin monolayer PDMS nanobrush on an underlying substrate facilitated regaining cell adhesion through long-range cell attractive forces such as the van der Waals forces. We showed that cell adhesion is diminished by increasing the number of nanobrush layers, causing a gradual decrease of the effectiveness of the long-range force. The result demonstrates that ultrathin PDMS nanobrush can either promote or inhibit cell adhesion, which is required for various biomedical fields such as tissue-engineering, anti-fouling coating, and implantable biomaterials and sensors.