Search Results

Now showing 1 - 2 of 2
  • Item
    Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island
    (Munich : EGU, 2013) Igel, J.; Günther, T.; Kuntzer, M.
    Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.
  • Item
    Impacts of a capillary barrier on infiltration and subsurface stormflow in layered slope deposits monitored with 3-D ERT and hydrometric measurements
    (Munich : EGU, 2017) Hübner, Rico; Günther, Thomas; Heller, Katja; Noell, Ursula; Kleber, Arno
    Identifying principles of water movement in the shallow subsurface is crucial for adequate process-based hydrological models. Hillslopes are the essential interface for water movement in catchments. The shallow subsurface on slopes typically consists of different layers with varying characteristics. The aim of this study was to draw conclusions about the infiltration behaviour, to identify water flow pathways and derive some general interpretations for the validity of the water movement on a hillslope with periglacial slope deposits (cover beds), where the layers differ in their sedimentological and hydrological properties. Especially the described varying influence of the basal layer (LB) as an impeding layer on the one hand and as a remarkable pathway for rapid subsurface stormflow on the other. We used a time lapse 3-D electrical resistivity tomography (ERT) approach combined with punctual hydrometric data to trace the spreading and the progression of an irrigation plume in layered slope deposits during two irrigation experiments. This multi-technical approach enables us to connect the high spatial resolution of the 3-D ERT with the high temporal resolution of the hydrometric devices. Infiltration through the uppermost layer was dominated by preferential flow, whereas the water flow in the deeper layers was mainly matrix flow. Subsurface stormflow due to impeding characteristic of the underlying layer occurs in form of "organic layer interflow" and at the interface to the first basal layer (LB1). However, the main driving factor for subsurface stormflow is the formation of a capillary barrier at the interface to the second basal layer (LB2). The capillary barrier prevents water from entering the deeper layer under unsaturated conditions and diverts the seepage water according to the slope inclination. With higher saturation, the capillary barrier breaks down and water reaches the highly conductive deeper layer. This highlights the importance of the capillary barrier effect for the prevention or activation of different flow pathways under variable hydrological conditions.