Search Results

Now showing 1 - 7 of 7
  • Item
    Classification and clustering: models, software and applications
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mucha, Hans-Joachim; Ritter, Gunter
    We are pleased to present the report on the 30th Fall Meeting of the working group ``Data Analysis and Numerical Classification'' (AG-DANK) of the German Classification Society. The meeting took place at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, from Friday Nov. 14 till Saturday Nov. 15, 2008. Already 12 years ago, WIAS had hosted a traditional Fall Meeting with special focus on classification and multivariate graphics (Mucha and Bock, 1996). This time, the special topics were stability of clustering and classification, mixture decomposition, visualization, and statistical software.
  • Item
    Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Heitsch, Holger; Leövey, Hernan; Römisch, Werner
    Quasi-Monte Carlo algorithms are studied for designing discrete approximations of two-stage linear stochastic programs with random right-hand side and continuous probability distribution. The latter should allow for a transformation to a distribution with independent marginals. The twostage integrands are piecewise linear, but neither smooth nor lie in the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, are continuously differentiable and that first and second order ANOVA terms have mixed first order partial derivatives and belong to L2. Hence, randomly shifted lattice rules (SLR) may achieve the optimal rate of convergence O(n-1+delta) with 2 (0; 1 2 ] and a constant not depending on the dimension if the effective superposition dimension is at most two. We discuss effective dimensions and dimension reduction for two-stage integrands. The geometric condition is shown to be satisfied almost everywhere if the underlying probability distribution is normal and principal component analysis (PCA) is used for transforming the covariance matrix. Numerical experiments for a large scale two-stage stochastic production planning model with normal demand show that indeed convergence rates close to the optimal are achieved when using SLR and randomly scrambled Sobol’ point sets accompanied with PCA for dimension reduction.
  • Item
    Dimension reduction of thermistor models for large-area organic light-emitting diodes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional φ(x)-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter ε > 0 which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.
  • Item
    In search on non-Gaussian components of a high-dimensional distribution
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Blanchard, Gilles; Kawanabe, Motoaki; Sugiyama, Masashi; Spokoiny, Vladimir; Müller, Klaus-Robert
    Finding non-Gaussian components of high-dimensional data is an important preprocessing step for efficient information processing. This article proposes a new em linear method to identify the "non-Gaussian subspace'' within a very general semi-parametric framework. Our proposed method, called NGCA (Non-Gaussian Component Analysis), is essentially based on the fact that we can construct a linear operator which, to any arbitrary nonlinear (smooth) function, associates a vector which belongs to the low dimensional non-Gaussian target subspace up to an estimation error. By applying this operator to a family of different nonlinear functions, one obtains a family of different vectors lying in a vicinity of the target space. As a final step, the target space itself is estimated by applying PCA to this family of vectors. We show that this procedure is consistent in the sense that the estimaton error tends to zero at a parametric rate, uniformly over the family, Numerical examples demonstrate the usefulness of our method
  • Item
    Detecting ineffective features for pattern recognition
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach, 2017) Györfi, László; Walk, Harro
    For a binary classification problem, the hypothesis testing is studied, that a component of the observation vector is not effective, i.e., that component carries no information for the classification. We introduce nearest neighbor and partitioning estimates of the Bayes error probability, which result in a strongly consistent test.
  • Item
    Big data clustering: Data preprocessing, variable selection, and dimension reduction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Mucha, Hans-Joachim
    [no abstract available]
  • Item
    Effective diffusion in thin structures via generalized gradient systems and EDP-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Frenzel, Thomas; Liero, Matthias
    The notion of Energy-Dissipation-Principle convergence (EDP-convergence) is used to derive effective evolution equations for gradient systems describing diffusion in a structure consisting of several thin layers in the limit of vanishing layer thickness. The thicknesses of the sublayers tend to zero with different rates and the diffusion coefficients scale suitably. The Fokker--Planck equation can be formulated as gradient-flow equation with respect to the logarithmic relative entropy of the system and a quadratic Wasserstein-type gradient structure. The EDP-convergence of the gradient system is shown by proving suitable asymptotic lower limits of the entropy and the total dissipation functional. The crucial point is that the limiting evolution is again described by a gradient system, however, now the dissipation potential is not longer quadratic but is given in terms of the hyperbolic cosine. The latter describes jump processes across the thin layers and is related to the Marcelin--de Donder kinetics.