Search Results

Now showing 1 - 4 of 4
  • Item
    Self-assembly of Co/Pt stripes with current-induced domain wall motion towards 3D racetrack devices
    ([London] : Nature Publishing Group UK, 2024) Fedorov, Pavel; Soldatov, Ivan; Neu, Volker; Schäfer, Rudolf; Schmidt, Oliver G.; Karnaushenko, Daniil
    Modification of the magnetic properties under the induced strain and curvature is a promising avenue to build three-dimensional magnetic devices, based on the domain wall motion. So far, most of the studies with 3D magnetic structures were performed in the helixes and nanowires, mainly with stationary domain walls. In this study, we demonstrate the impact of 3D geometry, strain and curvature on the current-induced domain wall motion and spin-orbital torque efficiency in the heterostructure, realized via a self-assembly rolling technique on a polymeric platform. We introduce a complete 3D memory unit with write, read and store functionality, all based on the field-free domain wall motion. Additionally, we conducted a comparative analysis between 2D and 3D structures, particularly addressing the influence of heat during the electric current pulse sequences. Finally, we demonstrated a remarkable increase of 30% in spin-torque efficiency in 3D configuration.
  • Item
    An electronic analog of synthetic genetic networks
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Hellen, E.H.; Volkov, E.; Kurths, J.; Dana, S.K.
    An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics.
  • Item
    Graphene transistors for real-time monitoring molecular self-assembly dynamics
    (London : Nature Publishing Group, 2020) Gobbi, Marco; Galanti, Agostino; Stoeckel, Marc-Antoine; Zyska, Bjorn; Bonacchi, Sara; Hecht, Stefan; Samorì, Paolo
    Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D. © 2020, The Author(s).
  • Item
    Spectral dynamics of shift current in ferroelectric semiconductor SbSI
    (Washington : National Academy of Sciences, 2019) Sotome, M.; Nakamura, M.; Fujioka, J.; Ogino, M.; Kaneko, Y.; Morimoto, T.; Zhang, Y.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.; Ogawa, N.
    Photoexcitation in solids brings about transitions of electrons/ holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.