Search Results

Now showing 1 - 2 of 2
  • Item
    Positivity preservation of implicit discretizations of the advection equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Hadjimichael, Yiannis; Ketcheson, David I.; Lóczi, Lajos
    We analyze, from the viewpoint of positivity preservation, certain discretizations of a fundamental partial differential equation, the one-dimensional advection equation with periodic boundary condition. The full discretization is obtained by coupling a finite difference spatial semidiscretization (the second- and some higher-order centered difference schemes, or the Fourier spectral collocation method) with an arbitrary _x0012_θ-method in time (including the forward and backward Euler methods, and a second-order method by choosing _x0012_ θ ∈ [0, 1] suitably). The full discretization generates a two-parameter family of circulant matrices M ∈ ℝ m_x0002_xm , where each matrix entry is a rational function in θ and _x0017_ν . Here, _x0017_ν denotes the CFL number, being proportional to the ratio between the temporal and spatial discretization step sizes. The entrywise non-negativity of the matrix M---which is equivalent to the positivity preservation of the fully discrete scheme---is investigated via discrete Fourier analysis and also by solving some low-order parametric linear recursions. We find that positivity preservation of the fully discrete system is impossible if the number of spatial grid points m is even. However, it turns out that positivity preservation of the fully discrete system is recovered for odd values of m provided that θ ≥ 1/2 and ν are chosen suitably. These results are interesting since the systems of ordinary differential equations obtained via the spatial semi-discretizations studied are not positivity preserving.
  • Item
    Projection methods for incompressible flow problems with WENO finite difference schemes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Frutos, Javier de; John, Volker; Novo, Julia
    Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convectiondiffusion equations [?]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several nonincremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.