Search Results

Now showing 1 - 3 of 3
  • Item
    Topological data analysis of contagion maps for examining spreading processes on networks
    ([London] : Nature Publishing Group UK, 2015) Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth’s surface; however, in modern contagions long-range edges—for example, due to airline transportation or communication media—allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct ‘contagion maps’ that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
  • Item
    Improved earthquake aftershocks forecasting model based on long-term memory
    ([London] : IOP, 2021) Zhang, Yongwen; Zhou, Dong; Fan, Jingfang; Marzocchi, Warner; Ashkenazy, Yosef; Havlin, Shlomo
    A prominent feature of earthquakes is their empirical laws, including memory (clustering) in time and space. Several earthquake forecasting models, such as the epidemic-type aftershock sequence (ETAS) model, were developed based on these empirical laws. Yet, a recent study [1] showed that the ETAS model fails to reproduce the significant long-term memory characteristics found in real earthquake catalogs. Here we modify and generalize the ETAS model to include short- and long-term triggering mechanisms, to account for the short- and long-time memory (exponents) discovered in the data. Our generalized ETAS model accurately reproduces the short- and long-term/distance memory observed in the Italian and Southern Californian earthquake catalogs. The revised ETAS model is also found to improve earthquake forecasting after large shocks.
  • Item
    Robustly forecasting maize yields in Tanzania based on climatic predictors
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Laudien, Rahel; Schauberger, Bernhard; Makowski, David; Gornott, Christoph
    Seasonal yield forecasts are important to support agricultural development programs and can contribute to improved food security in developing countries. Despite their importance, no operational forecasting system on sub-national level is yet in place in Tanzania. We develop a statistical maize yield forecast based on regional yield statistics in Tanzania and climatic predictors, covering the period 2009–2019. We forecast both yield anomalies and absolute yields at the sub-national scale about 6 weeks before the harvest. The forecasted yield anomalies (absolute yields) have a median Nash–Sutcliffe efficiency coefficient of 0.72 (0.79) in the out-of-sample cross validation, which corresponds to a median root mean squared error of 0.13 t/ha for absolute yields. In addition, we perform an out-of-sample variable selection and produce completely independent yield forecasts for the harvest year 2019. Our study is potentially applicable to other countries with short time series of yield data and inaccessible or low quality weather data due to the usage of only global climate data and a strict and transparent assessment of the forecasting skill.