Search Results

Now showing 1 - 3 of 3
  • Item
    Elastomeric Optical Waveguides by Extrusion Printing
    (Weinheim : Wiley, 2022) Feng, Jun; Zheng, Yijun; Jiang, Qiyang; Włodarczyk‐Biegun, Małgorzata K.; Pearson, Samuel; del Campo, Aránzazu
    Advances in optogenetics and the increasing use of implantable devices for therapies and health monitoring are driving demand for compliant, biocompatible optical waveguides and scalable methods for their manufacture. Molding, thermal drawing, and dip-coating are the most prevalent approaches in recent literature. Here the authors demonstrate that extrusion printing at room temperature can be used for continuous fabrication of compliant optical waveguides with polydimethylsiloxane (PDMS) core and crosslinked Pluronic F127-diacrylate (Pluronic-DA) cladding. The optical fibers are printed from fluid precursor inks and stabilized by physical interactions and photoinitiated crosslinking in the Pluronic-DA. The printed fibers show optical loss values of 0.13–0.34 dB cm–1 in air and tissue within the wavelength range of 405–520 nm. The fibers have a Young's Modulus (Pluronic cladding) of 150 kPa and can be stretched to more than 5 times their length. The optical loss of the fibers shows little variation with extension. This work demonstrates how printing can simplify the fabrication of compliant and stretchable devices from materials approved for clinical use. These can be of interest for optogenetic or photopharmacology applications in extensible tissues, like muscles or heart.
  • Item
    Double-Hydrophobic-Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling
    (Chichester : John Wiley and Sons Ltd, 2020) Mredha, M.T.I.; Le, H.H.; Cui, J.; Jeon, I.
    In recent years, various hydrogels with a wide range of functionalities have been developed. However, owing to the two major drawbacks of hydrogels—air-drying and water-swelling—hydrogels developed thus far have yet to achieve most of their potential applications. Herein, a bioinspired, facile, and versatile method for fabricating hydrogels with high stability in both air and water is reported. This method includes the creation of a bioinspired homogeneous fusion layer of a hydrophobic polymer and oil in the outermost surface layer of the hydrogel via a double-hydrophobic-coating produced through quenching. As a proof-of-concept, this method is applied to a polyacrylamide hydrogel without compromising its mechanical properties. The coated hydrogel exhibits strong resistance to both drying in air and swelling in multiple aqueous environments. Furthermore, the versatility of this method is demonstrated using different types of hydrogels and oils. Because this method is easy to apply and is not dependent on hydrogel surface chemistry, it can significantly broaden the scope of next-generation hydrogels for real-world applications in both wet and dry environments.
  • Item
    A Photoreceptor-Based Hydrogel with Red Light-Responsive Reversible Sol-Gel Transition as Transient Cellular Matrix
    (Weinheim : Wiley, 2023) Hörner, Maximilian; Becker, Jan; Bohnert, Rebecca; Baños, Miguel; Jerez‐Longres, Carolina; Mühlhäuser, Vanessa; Härrer, Daniel; Wong, Tin Wang; Meier, Matthias; Weber, Wilfried
    Hydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano-responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor-based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star-shaped polyethylene glycol, functionalized with the red/far-red light photoreceptor phytochrome B (PhyB), or phytochrome-interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far-red light, the proteins dissociate and trigger a complete gel-to-sol transition. The hydrogel's light-responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site- and time-specific positioning of cells and will contribute to overcome spatial restrictions.