Search Results

Now showing 1 - 5 of 5
  • Item
    SHACL Constraint Validation during SPARQL Query Processing
    (Aachen, Germany : RWTH Aachen, 2021) Rohde, Phlipp D.
    The importance of knowledge graphs is increasing. Due to their application in more and more real-world use-cases the data quality issue has to be addressed. The Shapes Constraint Language (SHACL) is the W3C recommendation language for defining integrity constraints over knowledge graphs expressed in the Resource Description Framework (RDF). Annotating SPARQL query results with metadata from the SHACL validation provides a better understanding of the knowledge graph and its data quality. We propose a query engine that is able to efficiently evaluate which instances in the knowledge graph fulfill the requirements from the SHACL shape schema and annotate the SPARQL query result with this metadata. Hence, adding the dimension of explainability to SPARQL query processing. Our preliminary analysis shows that the proposed optimizations performed for SHACL validation during SPARQL query processing increase the performance compared to a naive approach. However, in some queries the naive approach outperforms the optimizations. This shows that more work needs to be done in this topic to fully comprehend all impacting factors and to identify the amount of overhead added to the query execution.
  • Item
    Resorting to Context-Aware Background Knowledge for Unveiling Semantically Related Social Media Posts
    (New York, NY : IEEE, 2022) Sakor, Ahmad; Singh, Kuldeep; Vidal, Maria-Esther
    Social media networks have become a prime source for sharing news, opinions, and research accomplishments in various domains, and hundreds of millions of posts are announced daily. Given this wealth of information in social media, finding related announcements has become a relevant task, particularly in trending news (e.g., COVID-19 or lung cancer). To facilitate the search of connected posts, social networks enable users to annotate their posts, e.g., with hashtags in tweets. Albeit effective, an annotation-based search is limited because results will only include the posts that share the same annotations. This paper focuses on retrieving context-related posts based on a specific topic, and presents PINYON, a knowledge-driven framework, that retrieves associated posts effectively. PINYON implements a two-fold pipeline. First, it encodes, in a graph, a CORPUS of posts and an input post; posts are annotated with entities for existing knowledge graphs and connected based on the similarity of their entities. In a decoding phase, the encoded graph is used to discover communities of related posts. We cast this problem into the Vertex Coloring Problem, where communities of similar posts include the posts annotated with entities colored with the same colors. Built on results reported in the graph theory, PINYON implements the decoding phase guided by a heuristic-based method that determines relatedness among posts based on contextual knowledge, and efficiently groups the most similar posts in the same communities. PINYON is empirically evaluated on various datasets and compared with state-of-the-art implementations of the decoding phase. The quality of the generated communities is also analyzed based on multiple metrics. The observed outcomes indicate that PINYON accurately identifies semantically related posts in different contexts. Moreover, the reported results put in perspective the impact of known properties about the optimality of existing heuristics for vertex graph coloring and their implications on PINYON scalability.
  • Item
    Knowledge Graphs - Working Group Charter (NFDI section-metadata) (1.2)
    (Genève : CERN, 2023) Stocker, Markus; Rossenova, Lozana; Shigapov, Renat; Betancort, Noemi; Dietze, Stefan; Murphy, Bridget; Bölling, Christian; Schubotz, Moritz; Koepler, Oliver
    Knowledge Graphs are a key technology for implementing the FAIR principles in data infrastructures by ensuring interoperability for both humans and machines. The Working Group "Knowledge Graphs" in Section "(Meta)data, Terminologies, Provenance" of the German National Research Data Infrastructure (Nationale Forschungsdateninfrastruktur (NFDI) e.V.) aims to promote the use of knowledge graphs in all NFDI consortia, to facilitate cross-domain data interlinking and federation following the FAIR principles, and to contribute to the joint development of tools and technologies that enable transformation of structured and unstructured data into semantically reusable knowledge across different domains.
  • Item
    ORKG: Facilitating the Transfer of Research Results with the Open Research Knowledge Graph
    (Sofia : Pensoft, 2021) Auer, Sören; Stocker, Markus; Vogt, Lars; Fraumann, Grischa; Garatzogianni, Alexandra
    This document is an edited version of the original funding proposal entitled 'ORKG: Facilitating the Transfer of Research Results with the Open Research Knowledge Graph' that was submitted to the European Research Council (ERC) Proof of Concept (PoC) Grant in September 2020 (https://erc.europa.eu/funding/proof-concept). The proposal was evaluated by five reviewers and has been placed after the evaluations on the reserve list. The main document of the original proposal did not contain an abstract.
  • Item
    Towards an Open Research Knowledge Graph
    (Zenodo, 2018) Auer, Sören; Blümel, Ina; Ewerth, Ralph; Garatzogianni, Alexandra; Heller,, Lambert; Hoppe, Anett; Kasprzik, Anna; Koepler, Oliver; Nejdl, Wolfgang; Plank, Margret; Sens, Irina; Stocker, Markus; Tullney, Marco; Vidal, Maria-Esther; van Wezenbeek, Wilma
    The document-oriented workflows in science have reached (or already exceeded) the limits of adequacy as highlighted for example by recent discussions on the increasing proliferation of scientific literature and the reproducibility crisis. Despite an improved and digital access to scientific publications in the last decades, the exchange of scholarly knowledge continues to be primarily document-based: Researchers produce essays and articles that are made available in online and offline publication media as roughly granular text documents. With current developments in areas such as knowledge representation, semantic search, human-machine interaction, natural language processing, and artificial intelligence, it is possible to completely rethink this dominant paradigm of document-centered knowledge exchange and transform it into knowledge-based information flows by representing and expressing knowledge through semantically rich, interlinked knowledge graphs. The core of the establishment of knowledge-based information flows is the distributed, decentralized, collaborative creation and evolution of information models, vocabularies, ontologies, and knowledge graphs for the establishment of a common understanding of data and information between the various stakeholders as well as the integration of these technologies into the infrastructure and processes of search and knowledge exchange in the research library of the future. By integrating these information models into existing and new research infrastructure services, the information structures that are currently still implicit and deeply hidden in documents can be made explicit and directly usable. This revolutionizes scientific work because information and research results can be seamlessly interlinked with each other and better mapped to complex information needs. As a result, scientific work becomes more effective and efficient, since results become directly comparable and easier to reuse. In order to realize the vision of knowledge-based information flows in scholarly communication, comprehensive long-term technological infrastructure development and accompanying research are required. To secure information sovereignty, it is also of paramount importance to science – and urgency to science policymakers – that scientific infrastructures establish an open counterweight to emerging commercial developments in this area. The aim of this position paper is to facilitate the discussion on requirements, design decisions and a minimum viable product for an Open Research Knowledge Graph infrastructure. TIB aims to start developing this infrastructure in an open collaboration with interested partner organizations and individuals.