Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies

2006, Serafimovich, A., Zülicke, Ch., Hoffmann, P., Peters, D., Dalin, P., Singer, W.

We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.

Loading...
Thumbnail Image
Item

VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements

2021, Lübken, Franz-Josef, Höffner, Josef

A new concept for a cluster of compact lidar systems named VAHCOLI (Vertical And Horizontal COverage by LIdars) is presented, which allows for the measurement of temperatures, winds, and aerosols in the middle atmosphere (10 110 km) with high temporal and vertical resolution of minutes and some tens of meters, respectively, simultaneously covering horizontal scales from a few hundred meters to several hundred kilometers ( four-dimensional coverage ). The individual lidars ( units ) being used in VAHCOLI are based on a diode-pumped alexandrite laser, which is currently designed to detect potassium (D 770 nm), and on sophisticated laser spectroscopy measuring all relevant frequencies (seeder laser, power laser, backscattered light) with high temporal resolution (2 ms) and high spectral resolution applying Doppler-free spectroscopy. The frequency of the lasers and the narrowband filter in the receiving system are stabilized to typically 10 100 kHz, which is a factor of roughly 105 smaller than the Doppler-broadened Rayleigh signal. Narrowband filtering allows for the measurement of Rayleigh and/or resonance scattering separately from the aerosol (Mie) signal during both night and day. Lidars used for VAHCOLI are compact (volume: 1m3) and multi-purpose systems which employ contemporary electronic, optical, and mechanical components. The units are designed to autonomously operate under harsh field conditions in remote locations. An error analysis with parameters of the anticipated system demonstrates that temperatures and line-of-sight winds can be measured from the lower stratosphere to the upper mesosphere with an accuracy of (0.1 5)K and (0.1 10)ms1, respectively, increasing with altitude. We demonstrate that some crucial dynamical processes in the middle atmosphere, such as gravity waves and stratified turbulence, can be covered by VAHCOLI with sufficient temporal, vertical, and horizontal sampling and resolution. The four-dimensional capabilities of VAHCOLI allow for the performance of time-dependent analysis of the flow field, for example by employing Helmholtz decomposition, and for carrying out statistical tests regarding, for example, intermittency and helicity. The first test measurements under field conditions with a prototype lidar were performed in January 2020. The lidar operated successfully during a 6-week period (night and day) without any adjustment. The observations covered a height range of 5 100 km and demonstrated the capability and applicability of this unit for the VAHCOLI concept.

Loading...
Thumbnail Image
Item

Rocket measurements of positive ions during polar mesosphere winter echo conditions

2006, Brattli, A., Blix, T.A., Lie-Svendsen, Ø., Hoppe, U.-P., Lübken, F.-J., Rapp, M., Singer, W., Latteck, R., Friedrich, M.

On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E) during conditions with Polar Mesosphere Winter Echoes (PMWE). Each of the rockets was equipped with a Positive Ion Probe (PIP) and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km) layer.

Loading...
Thumbnail Image
Item

A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results

2021, Stude, Joan, Aufmhoff, Heinfried, Schlager, Hans, Rapp, Markus, Arnold, Frank, Strelnikov, Boris

We present a novel rocket-borne ion mass spectrometer named ROMARA (ROcket-borne MAss spectrometer for Research in the Atmosphere) for measuring atmospheric positive and negative ions (atomic, molecular and cluster ions) and positively and negatively charged meteor smoke particles. Our ROMARA instrument has, compared to previous rocket-borne ion mass spectrometers, a markedly larger mass range of up to m=z 2000 and a larger sensitivity, particularly for meteor smoke particle detection. The major objectives of this first ROMARA flight included the following: a functional test of the ROMARA instrument, measurements between 55 and 121 km in the mass range of atmospheric positive and negative ions, a first attempt to conduct mass spectrometric measurements in the mass range of meteor smoke particles with mass-to-charge ratios up to m=z 2000, and measurements inside a polar mesospheric winter echo layer as detected by ground-based radar. Our ROMARA measurements took place on the Arctic island of Andøya, Norway, at around noon in April 2018 and represented an integral part of the polar mesospheric winter radar echo (PMWE) rocket campaign. During the rocket flight, ROMARA was operated in a measurement mode, offering maximum sensitivity and the ability to qualitatively detect total ion signatures even beyond its mass-resolving mass range. On this first ROMARA flight we were able to meet all of our objectives. We detected atmospheric species including positive atomic, molecular and cluster ions along with negative molecular ions up to about m=z 100. Above m=z 2000, ROMARA measured strong negative-ion signatures, which are likely due to negatively charged meteor smoke particles. © 2021 Author(s).

Loading...
Thumbnail Image
Item

Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N)

2008, Schöch, A., Baumgarten, G., Fiedler, J.

Rayleigh lidar temperature profiles have been derived in the polar middle atmosphere from 834 measurements with the ALOMAR Rayleigh/Mie/Raman lidar (69.3° N, 16.0° E) in the years 1997–2005. Since our instrument is able to operate under full daylight conditions, the unique data set presented here extends over the entire year and covers the altitude region 30 km–85 km in winter and 30 km–65 km in summer. Comparisons of our lidar data set to reference atmospheres and ECMWF analyses show agreement within a few Kelvin in summer but in winter higher temperatures below 55 km and lower temperatures above by as much as 25 K, due likely to superior resolution of stratospheric warming and associated mesospheric cooling events. We also present a temperature climatology for the entire lower and middle atmosphere at 69° N obtained from a combination of lidar measurements, falling sphere measurements and ECMWF analyses. Day to day temperature variability in the lidar data is found to be largest in winter and smallest in summer.

Loading...
Thumbnail Image
Item

Upper stratospheric ozone decrease events due to a positive feedback between ozone and the ozone dissociation rate

2009, Sonnemann, G.R., Hartogh, P.

Ozone measurements taken with a ground based microwave instrument at Lindau (51.66° N, 10.13° E) over some years showed strong ozone decrease events within the stratopause region, particularly during the winter half-year. These events are characterized by a marked drop of the ozone mixing ratio from two to three ppmv to less than half a ppmv in extreme cases. Simultaneous water vapor measurements at the same place, also carried out by a microwave instrument, showed a strong increase of its mixing ratio and the temperature was also enhanced during these episodes. The theoretical analysis brought evidence that these events result from a positive feedback in the complex radiatively-chemical system between the ozone column density and the ozone dissociation rate.

Loading...
Thumbnail Image
Item

Evaluation of wake influence on high-resolution balloon-sonde measurements

2019, Söder, J., Gerding, M., Schneider, A., Dörnbrack, A., Wilms, H., Wagner, J., Lübken, F.-J.

Balloons are used for various in situ measurements in the atmosphere. On turbulence measurements from rising balloons there is a potential for misinterpreting wake-created fluctuations in the trail of the balloon for atmospheric turbulence. These wake effects have an influence on temperature and humidity measurements from radiosondes as well. The primary aim of this study is to assess the likelihood for wake encounter on the payload below a rising balloon. Therefore, we present a tool for calculating this probability based on radiosonde wind data. This includes a retrieval of vertical winds from the radiosonde and an uncertainty analysis of the wake assessment. Our wake evaluation tool may be used for any balloon-gondola distance and provides a significant refinement compared to existing assessments. We have analysed wake effects for various balloon-gondola distances applying atmospheric background conditions from a set of 30 radiosondes. For a standard radiosonde we find an average probability for wake encounter of 28 %, pointing out the importance of estimating wake effects on sounding balloons. Furthermore, we find that even millimetre-sized objects in the payload can have significant effects on high-resolution turbulence measurements, if they are located upstream of the turbulence sensor. © Author(s) 2019. This work is distributed under.

Loading...
Thumbnail Image
Item

Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part I: Observations with collocated radars

2006, Hoffmann, P., Serafimovich, A., Peters, D., Dalin, P., Goldberg, R., Latteck, R.

During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR) near Andenes and the Swedish Rocket Range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E) and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.