Search Results

Now showing 1 - 2 of 2
  • Item
    Integrating Biophysics in Toxicology
    (Basel : MDPI, 2020) Del Favero, G.; Kraegeloh, A.
    Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.
  • Item
    Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales
    (Weinheim : VCH Verl.-Ges., 2022) Schamberger, Barbara; Ziege, Ricardo; Anselme, Karine; Ben Amar, Martine; Bykowski, Michał; Castro, André P. G.; Cipitria, Amaia; Coles, Rhoslyn A.; Dimova, Rumiana; Eder, Michaela; Ehrig, Sebastian; Escudero, Luis M.; Evans, Myfanwy E.; Fernandes, Paulo R.; Fratzl, Peter; Geris, Liesbet; Gierlinger, Notburga; Hannezo, Edouard; Iglič, Aleš; Kirkensgaard, Jacob J. K.; Kollmannsberger, Philip; Kowalewska, Łucja; Kurniawan, Nicholas A.; Papantoniou, Ioannis; Pieuchot, Laurent; Pires, Tiago H. V.; Renner, Lars D.; Sageman‐Furnas, Andrew O.; Schröder‐Turk, Gerd E.; Sengupta, Anupam; Sharma, Vikas R.; Tagua, Antonio; Tomba, Caterina; Trepat, Xavier; Waters, Sarah L.; Yeo, Edwina F.; Roschger, Andreas; Bidan, Cécile M.; Dunlop, John W. C.
    Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.