Search Results

Now showing 1 - 5 of 5
  • Item
    DNA Nanotechnology Enters Cell Membranes
    (Weinheim : Wiley-VCH, 2019) Huo, Shuaidong; Li, Hongyan; Boersma, Arnold J.; Herrmann, Andreas
    DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.
  • Item
    Thermo-Responsive Ultrafiltration Block Copolymer Membranes Based on Polystyrene-block-poly(diethyl acrylamide)
    (Weinheim : Wiley-VCH GmbH, 2023) Frieß, Florian V.; Hartmann, Frank; Gemmer, Lea; Pieschel, Jens; Niebuur, Bart‐Jan; Faust, Matthias; Kraus, Tobias; Presser, Volker; Gallei, Markus
    Within the present work, a thermo-responsive ultrafiltration membrane is manufactured based on a polystyrene-block-poly(diethyl acrylamide) block copolymer (BCP). The poly(diethyl acrylamide) block segment features a lower critical solution temperature (LCST) in water, similar to the well-known poly(N-isopropylacrylamide), but having increased biocompatibility and without exhibiting a hysteresis of the thermally induced switching behavior. The BCP is synthesized via sequential “living” anionic polymerization protocols and analyzed by 1H-NMR spectroscopy, size exclusion chromatography, and differential scanning calorimetry. The resulting morphology in the bulk state is investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealing the intended hexagonal cylindrical morphology. The BCPs form micelles in a binary mixture of tetrahydrofuran and dimethylformamide, where BCP composition and solvent affinities are discussed in light of the expected structure of these micelles and the resulting BCP membrane formation. The membranes are manufactured using the non-solvent induced phase separation (NIPS) process and are characterized via scanning electron microscopy (SEM) and water permeation measurements. The latter are carried out at room temperature and at 50 °C revealing up to a 23-fold increase of the permeance, when crossing the LCST of the poly(diethyl acrylamide) block segment in water.
  • Item
    Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies
    (Weinheim : Wiley-VCH, 2021) Frieß, Florian V.; Hu, Qiwei; Mayer, Jannik; Gemmer, Lea; Presser, Volker; Balzer, Bizan N.; Gallei, Markus
    In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.
  • Item
    Recycling and Separation of Homogeneous Catalyst from Aqueous Multicomponent Mixture by Organic Solvent Nanofiltration
    (Basel : MDPI, 2021) Schnoor, J.-Kilian; Bettmer, Jens; Kamp, Johannes; Wessling, Matthias; Liauw, Marcel A.
    Organic solvent nanofiltration (OSN) has evolved to an established recycling method for homogeneous catalysts. However, commercial availability has not circumvented the need for classification and the scoping of possible applications for specific solvent mixtures. Therefore, Evonik’s DuraMem® 300 was assessed for the recycling of magnesium triflate at two transmembrane pressures from a mixture of ethanol, ethyl acetate and water. Catalyst retention up to 98% and permeability of up to 4.44·10−1∙L∙bar−1∙m−2∙h−1 were possible when less than 25% ethyl acetate was in the mixture. The retention of some of the components in the ternary mixture was observed while others were enriched, making the membrane also suitable for fractioning thereof.
  • Item
    Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2014) Wessling, M.; Morcillo, L. Garrigós; Abdu, S.
    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research.