Search Results

Now showing 1 - 4 of 4
  • Item
    Beyond Janus Geometry: Characterization of Flow Fields around Nonspherical Photocatalytic Microswimmers
    (Weinheim : Wiley-VCH, 2022) Heckel, Sandra; Bilsing, Clemens; Wittmann, Martin; Gemming, Thomas; Büttner, Lars; Czarske, Jürgen; Simmchen, Juliane
    Catalytic microswimmers that move by a phoretic mechanism in response to a self-induced chemical gradient are often obtained by the design of spherical janus microparticles, which suffer from multi-step fabrication and low yields. Approaches that circumvent laborious multi-step fabrication include the exploitation of the possibility of nonuniform catalytic activity along the surface of irregular particle shapes, local excitation or intrinsic asymmetry. Unfortunately, the effects on the generation of motion remain poorly understood. In this work, single crystalline BiVO4 microswimmers are presented that rely on a strict inherent asymmetry of charge-carrier distribution under illumination. The origin of the asymmetrical flow pattern is elucidated because of the high spatial resolution of measured flow fields around pinned BiVO4 colloids. As a result the flow from oxidative to reductive particle sides is confirmed. Distribution of oxidation and reduction reactions suggests a dominant self-electrophoretic motion mechanism with a source quadrupole as the origin of the induced flows. It is shown that the symmetry of the flow fields is broken by self-shadowing of the particles and synthetic surface defects that impact the photocatalytic activity of the microswimmers. The results demonstrate the complexity of symmetry breaking in nonspherical microswimmers and emphasize the role of self-shadowing for photocatalytic microswimmers. The findings are leading the way toward understanding of propulsion mechanisms of phoretic colloids of various shapes.
  • Item
    Effect of Viscosity on Microswimmers: A Comparative Study
    (Weinheim : Wiley, 2021) Nsamela, Audrey; Sharan, Priyanka; Garcia‐Zintzun, Aidee; Heckel, Sandra; Chattopadhyay, Purnesh; Wang, Linlin; Wittmann, Martin; Gemming, Thomas; Saenz, James; Simmchen, Juliane
    Although many biological fluids like blood and mucus exhibit high viscosities, there are still many open questions concerning the swimming behavior of microswimmers in highly viscous media, limiting research to idealized laboratory conditions instead of application-oriented scenarios. Here, we analyze the effect of viscosity on the swimming speed and motion pattern of four kinds of microswimmers of different sizes which move by contrasting propulsion mechanisms: two biological swimmers (bovine sperm cells and Bacillus subtilis bacteria) which move by different bending patterns of their flagella and two artificial swimmers with catalytic propulsion mechanisms (alginate microtubes and Janus Pt@SiO2 spherical microparticles). Experiments consider two different media (glycerol and methylcellulose) with increasing viscosity, but also the impact of surface tension, catalyst activity and diffusion coefficients are discussed and evaluated.
  • Item
    Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating
    (Weinheim : Wiley-VCH, 2017) Mourran, Ahmed; Zhang, Hang; Vinokur, Rostislav; Möller, Martin
    A soft microrobot composed of a microgel and driven by the light-controlled nonequilibrium dynamics of volume changes is presented. The photothermal response of the microgel, containing plasmonic gold nanorods, enables fast heating/cooling dynamics. Mastering the nonequilibrium response provides control of the complex motion, which goes beyond what has been so far reported for hydrophilic microgels.
  • Item
    A Light-Driven Microgel Rotor
    (Weinheim : Wiley-VCH, 2019) Zhang, Hang; Koens, Lyndon; Lauga, Eric; Mourran, Ahmed; Möller, Martin
    The current understanding of motility through body shape deformation of micro-organisms and the knowledge of fluid flows at the microscale provides ample examples for mimicry and design of soft microrobots. In this work, a 2D spiral is presented that is capable of rotating by non-reciprocal curling deformations. The body of the microswimmer is a ribbon consisting of a thermoresponsive hydrogel bilayer with embedded plasmonic gold nanorods. Such a system allows fast local photothermal heating and nonreciprocal bending deformation of the hydrogel bilayer under nonequilibrium conditions. It is shown that the spiral acts as a spring capable of large deformations thanks to its low stiffness, which is tunable by the swelling degree of the hydrogel and the temperature. Tethering the ribbon to a freely rotating microsphere enables rotational motion of the spiral by stroboscopic irradiation. The efficiency of the rotor is estimated using resistive force theory for Stokes flow. This research demonstrates microscopic locomotion by the shape change of a spiral and may find applications in the field of microfluidics, or soft microrobotics.