Search Results

Now showing 1 - 2 of 2
  • Item
    Microwave-Assisted Synthesis of Core–Shell Nanoparticles—Insights into the Growth of Different Geometries
    (Weinheim : Wiley-VCH, 2020) Womiloju, Aisha A.; Höppener, Christiane; Schubert, Ulrich S.; Hoeppener, Stephanie
    Microwave irradiation is utilized for the rapid synthesis of gold–silver core–shell bimetallic nanoparticles (NPs) in a two-step process. A strategy of establishing a bilayer organic barrier around the core using citrate and ascorbic acid as capping agents, providing a means to achieve a well-defined boundary layer between the core and the shell material, is reported. These boundary layers are essential for synthesizing different core–shell morphologies and the approach results in tunable bimetallic NPs with defined core–shell structures, both for spherical as well as for triangular seed cores. In addition, theoretical calculations of the plasmonic characteristics based on the boundary element method of different classes of NPs are conducted. These investigations enable conclusions to be drawn on the influence of the core morphology on the tunability of their localized surface plasmon resonances. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    On the stability of microwave-fabricated SERS substrates - chemical and morphological considerations
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Wang, Limin; Womiloju, Aisha Adebola; Höppener, Christiane; Schubert, Ulrich Sigmar; Hoeppener, Stephanie
    The stability of surface-enhanced Raman spectroscopy (SERS) substrates in different organic solvents and different buffer solutions was investigated. SERS substrates were fabricated by a microwave-assisted synthesis approach and the morphological as well as chemical changes of the SERS substrates were studied. It was demonstrated that the SERS substrates treated with methanol, ethanol, or N,N-dimethylformamide (DMF) were comparable and showed overall good stability and did not show severe morphological changes or a strong decrease in their Raman activity. Toluene treatment resulted in a strong decrease in the Raman activity whereas dimethyl sulfoxide (DMSO) treatment completely preserved or even slightly improved the Raman enhancement capabilities. SERS substrates immersed into phosphate-buffered saline (PBS) solutions were observed to be rather instable in low and neutral pH buffer solutions. Other buffer systems showed less severe influences on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application of different organic solvents and buffer solutions.