Search Results

Now showing 1 - 2 of 2
  • Item
    The physiological and productivity effects of heat stress in cattle : a review
    (Warsaw : De Gruyter Open, 2019) Herbut, Piotr; Angrecka, Sabina; Godyń, Dorota; Hoffmann, Gundula
    A trend of global warming has been observed over the last few years and it has often been dis-cussed whether there is an effect on livestock. numerous studies have been published about heat stress in cattle and its influence on the physiology and productivity of animals. Preventing the negative effects of heat stress on cattle is essential to ensure animal welfare, health and produc-tivity. Monitoring and analysis of physiological parameters lead to a better understanding of the adaptation processes. This can help to determine the risk of climate change and its effects on performance characteristics, e.g. milk yield and reproduction. This, in turn, makes it possible to develop effective measures to mitigate the impact of heat load on animals. The aim of this article is to provide an overview of the current literature. studies especially about the physiological and productive changes due to heat stress in cattle have been summarised in this review. The direction of future research into the aspect of heat stress in cattle is also indicated
  • Item
    Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
    (Katlenburg-Lindau : Copernicus, 2020) Cornford, Stephen L.; Seroussi, Helene; Asay-Davis, Xylar S.; Gudmundsson, G. Hilmar; Arthern, Rob; Borstad, Chris; Christmann, Julia; dos Santos, Thiago Dias; Feldmann, Johannes; Goldberg, Daniel; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Leguy, Gunter; Lipscomb, William H.; Merino, Nacho; Durand, Gaël; Morlighem, Mathieu; Pollard, David; Rückamp, Martin; Williams, C. Rosie; Yu, Hongju
    We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions - notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods - taking a secondary role. © 2020 Wolters Kluwer Medknow Publications. All rights reserved.