Search Results

Now showing 1 - 3 of 3
  • Item
    Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles
    (Washington, DC : Soc., 2020) Sheng, Wenbo; Li, Wei; Tan, Deming; Zhang, Panpan; Zhang, En; Sheremet, Evgeniya; Schmidt, Bernhard V.K.J.; Feng, Xinliang; Rodriguez, Raul D.; Jordan, Rainer; Amin, Ihsan
    Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation. Copyright © 2020 American Chemical Society.
  • Item
    Monitoring the contact stress distribution of gecko-inspired adhesives using mechano-sensitive surface coatings
    (Washington D.C. : American Chemical Society, 2018) Neubauer, Jens W.; Xue, Longjian; Erath, Johann; Drotlef, Dirk-Michael; del Campo, Aránzazu; Fery, Andreas
    The contact geometry of microstructured adhesive surfaces is of high relevance for adhesion enhancement. Theoretical considerations indicate that the stress distribution in the contact zone is crucial for the detachment mechanism, but direct experimental evidence is missing so far. In this work, we propose a method that allows, for the first time, the detection of local stresses at the contact area of biomimetic adhesive microstructures during contact formation, compression and detachment. We use a mechano-sensitive polymeric layer, which turns mechanical stresses into changes of fluorescence intensity. The biomimetic surface is brought into contact with this layer in a well-defined fashion using a microcontact printer, while the contact area is monitored with fluorescence microscopy in situ. Thus, changes in stress distribution across the contact area during compression and pull-off can be visualized with a lateral resolution of 1 μm. We apply this method to study the enhanced adhesive performance of T-shaped micropillars, compared to flat punch microstructures. We find significant differences in the stress distribution of the both differing contact geometries during pull-off. In particular, we find direct evidence for the suppression of crack nucleation at the edge of T-shaped pillars, which confirms theoretical models for the superior adhesive properties of these structures.
  • Item
    Antimicrobial Brushes on Titanium via “Grafting to” Using Phosphonic Acid/Pyridinium Containing Block Copolymers
    (Weinheim : Wiley-VCH GmbH, 2023) Methling, Rafael; Dückmann, Oliver; Simon, Frank; Wolf‐Brandstetter, Cornelia; Kuckling, Dirk
    Coating medical implants with antibacterial polymers may prevent postoperative infections which are a common issue for conventional titanium implants and can even lead to implant failure. Easily applicable diblock copolymers are presented that form polymer brushes via “grafting to” mechanism on titanium and equip the modified material with antibacterial properties. The polymers carry quaternized pyridinium units to combat bacteria and phosphonic acid groups which allow the linear chains to be anchored to metal surfaces in a convenient coating process. The polymers are synthesized via reversible-addition-fragmentation-chain-transfer (RAFT) polymerization and postmodifications and are characterized using NMR spectroscopy and SEC. Low grafting densities are a major drawback of the “grafting to” approach compared to “grafting from”. Thus, the number of phosphonic acid groups in the anchor block are varied to investigate and optimize the surface binding. Modified titanium surfaces are examined regarding their composition, wetting behavior, streaming potential, and coating stability. Evaluation of the antimicrobial properties revealed reduced bacterial adhesion and biofilm formation for certain polymers, albeit the cell biocompatibility against human gingival fibroblasts is also impaired. The presented findings show the potential of easy-to-apply polymer coatings and aid in designing next-generation implant surface modifications.