Search Results

Now showing 1 - 3 of 3
  • Item
    Comparison of Multiscale Imaging Methods for Brain Research
    (Basel : MDPI, 2020) Tröger, Jessica; Hoischen, Christian; Perner, Birgit; Monajembashi, Shamci; Barbotin, Aurélien; Löschberger, Anna; Eggeling, Christian; Kessels, Michael M.; Qualmann, Britta; Hemmerich, Peter
    A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections.
  • Item
    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Träber, N.; Uhlmann, K.; Girardo, S.; Kesavan, G.; Wagner, K.; Friedrichs, J.; Goswami, R.; Bai, K.; Brand, M.; Werner, C.; Balzani, D.; Guck, J.
    Mechanical stress exerted and experienced by cells during tissue morphogenesis and organ formation plays an important role in embryonic development. While techniques to quantify mechanical stresses in vitro are available, few methods exist for studying stresses in living organisms. Here, we describe and characterize cell-like polyacrylamide (PAAm) bead sensors with well-defined elastic properties and size for in vivo quantification of cell-scale stresses. The beads were injected into developing zebrafish embryos and their deformations were computationally analyzed to delineate spatio-temporal local acting stresses. With this computational analysis-based cell-scale stress sensing (COMPAX) we are able to detect pulsatile pressure propagation in the developing neural rod potentially originating from polarized midline cell divisions and continuous tissue flow. COMPAX is expected to provide novel spatio-temporal insight into developmental processes at the local tissue level and to facilitate quantitative investigation and a better understanding of morphogenetic processes. © 2019, The Author(s).
  • Item
    Fabrication of multifunctional titanium surfaces by producing hierarchical surface patterns using laser based ablation methods
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Zwahr, Christoph; Helbig, Ralf; Werner, Carsten; Lasagni, Andrés Fabián
    Textured implant surfaces with micrometer and sub-micrometer features can improve contact properties like cell adhesion and bacteria repellency. A critical point of these surfaces is their mechanical stability during implantation. Therefore, strategies capable to provide both biocompatibility for an improved implant healing and resistance to wear for protecting the functional surface are required. In this work, laser-based fabrication methods have been used to produce hierarchical patterns on titanium surfaces. Using Direct Laser Writing with a nanosecond pulsed laser, crater-like structures with a separation distance of 50 µm are produced on unpolished titanium surfaces. Directly on this texture, a hole-like pattern with 5 µm spatial period is generated using Direct Laser Interference Patterning with picosecond pulses. While the smaller features should reduce the bacterial adhesion, the larger geometry was designed to protect the smaller features from wear. On the multifunctional surface, the adherence of E. Coli bacteria is reduced by 30% compared to the untreated reference. In addition, wear test performed on the multiple-scale patterns demonstrated the possibility to protect the smaller features by the larger craters. Also, the influence of the laser treatment on the growth of a titanium oxide layer was evaluated using Energy Dispersive X-Ray Spectroscopy analysis. © 2019, The Author(s).