Search Results

Now showing 1 - 10 of 11
  • Item
    Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Emmrich, Etienne; Lasarzik, Robert
    A nonlinear model due to Soddemann et al. [37] and Stewart [38] describing incompressible smectic-A liquid crystals under flow is studied. In comparison to previously considered models, this particular model takes into account possible undulations of the layers away from equilibrium, which has been observed in experiments. The emerging decoupling of the director and the layer normal is incorporated by an additional evolution equation for the director. Global existence of weak solutions to this model is proved via a Galerkin approximation with eigenfunctions of the associated linear differential operators in the three-dimensional case.
  • Item
    Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Heinemann, Christian; Kraus, Christiane
    The Cahn-Hilliard model is a typical phase field approach for describing phase separation and coarsening phenomena in alloys. This model has been generalized to the so-called Cahn-Larché system by combining it with elasticity to capture non-neglecting deformation phenomena, which occurs during phase separation in the material. Evolving microstructures such as phase separation and coarsening processes have a strong influence on damage initiation and propagation in alloys. We develop the existing framework of Cahn-Hilliard and Cahn-Larché systems by coupling these systems with a unidirectional evolution inclusion for an internal variable, describing damage processes. After establishing a weak notion of the corresponding evolutionary system, we prove existence of weak solutions for rate-dependent damage processes under certain growth conditions of the energy functional
  • Item
    A degenerating Cahn-Hilliard system coupled with complete damage processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Heinemann, Christian; Kraus, Christiane
    Complete damage in elastic solids appears when the material looses all its integrity due to high exposure. In the case of alloys, the situation is quite involved since spinodal decomposition and coarsening also occur at sufficiently low temperatures which may lead locally to high stress peaks. Experimental observations on solder alloys reveal void and crack growth especially at phase boundaries. In this work, we investigate analytically a degenerating PDE system with a time-depending domain for phase separation and complete damage processes under time-varying Dirichlet boundary conditions. The evolution of the system is described by a degenerating parabolic differential equation of fourth order for the concentration, a doubly nonlinear differential inclusion for the damage process and a degenerating quasi-static balance equation for the displacement field. All these equations are strongly nonlinearly coupled....
  • Item
    Complete damage in linear elastic materials : modeling, weak formulation and existence results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Heinemann, Christian; Kraus, Christiane
    We introduce a complete damage model with a time-depending domain for linear-elastically stressed solids under time-varying Dirichlet boundary conditions. The evolution of the system is described by a doubly nonlinear differential inclusion for the damage process and a quasi-static balance equation for the displacement field. For the introduced complete damage model, we propose a classical formulation and a corresponding suitable weak formulation in an S BV-framework. We show that the classical differential inclusion can be regained from the notion of weak solutions under certain regularity assumptions. The main aim of this work is to prove local-in-time existence and global-in-time existence in some weaker sense for the introduced model. In contrast to incomplete damage theories, the material can be exposed to damage in the proposed model in such a way that the elastic behavior may break down on the damaged parts of the material, i.e. we loose coercivity properties of the free energy. This leads to several mathematical difficulties. For instance, it might occur that not completely damaged material regions are isolated from the Dirichlet boundary. In this case, the deformation field cannot be controlled in the transition from incomplete to complete damage. To tackle this problem, we consider the evolution process on a time-depending domain. In this context, two major challenges arise: Firstly, the time-dependent domain approach leads to jumps in the energy which have to be accounted for in the energy inequality of the notion of weak solutions. To handle this problem, several energy estimates are established by Gamma-convergence techniques. Secondly, the time-depending domain might have bad smoothness properties such that Korn's inequality cannot be applied. To this end, a covering result for such sets with smooth compactly embedded domains has been shown.
  • Item
    Existence results for diffuse interface models describing phase separation and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Heinemann, Christian; Kraus, Christiane
    In this paper we analytically investigate Cahn-Hilliard and Allen-Cahn systems which are coupled with elasticity and uni-directional damage processes. We are interested in the case where the free energy contains logarithmic terms of the chemical concentration variable and quadratic terms of the gradient of the damage variable. For elastic Cahn-Hilliard and Allen-Cahn systems coupled with uni-directional damage processes, an appropriate notion of weak solutions is presented as well as an existence result based on certain regularization methods and an higher integrability result for the strain Literaturverz.
  • Item
    Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part III: Compactness and convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved Nernst-Planck-Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convectiondiffusionreaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, crossdiffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper, which continues the investigations of [DDGG17a, DDGG17b], we prove the compactness of the solution vector, and existence and convergence for the approximation schemes. We point at simple structural PDE arguments as an adequate substitute to the AubinLions compactness Lemma and its generalisations: These familiar techniques attain their limit in the context of our model in which the relationship between time derivatives (transport) and diffusion gradients is highly non linear.
  • Item
    Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part II: Approximation and a priori estimates
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved NernstPlanckPoisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convectiondiffusionreaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, crossdiffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper, which continues the investigation of [DDGG17a], we derive for thermodynamically consistent approximation schemes the natural uniform estimates associated with the dissipations. Our results essentially improve our former study [DDGG16], in particular the a priori estimates concerning the relative chemical potentials.
  • Item
    Analysis of improved Nernst-Planck-Poisson models of isothermal compressible electrolytes subject to chemical reactions: The case of a degenerate mobility matrix
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Druet, Pierre-Etienne
    We continue our investigations of the improved NernstPlanckPoisson model introduced in [DGM13]. In the paper [DDGG16] the analysis relies on the hypothesis that the mobility matrix has maximal rank under the constraint of mass conservation (rank N-1 for a mixture of N species). In this paper we allow for the case that the positive eigenvalues of the mobility matrix tend to zero along with the partial mass densities of certain species. In this approach the mobility matrix has a variable rank between zero and N-1 according to the number of locally available species. We set up a concept of weak solution able to deal with this scenario, showing in particular how to extend the fundamental notion of differences of chemical potentials that supports the modelling and the analysis in [DDGG16]. We prove the global-in-time existence in this solution class.
  • Item
    Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part I: Derivation of the model and survey of the results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved NernstPlanckPoisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convectiondiffusionreaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, crossdiffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper we establish the existence of a globalintime weak solution for the full model, allowing for a general structure of the mobility tensor and for chemical reactions with highly non linear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time. With respect to our former study [DDGG16], we also essentially improve the a priori estimates, in particular concerning the relative chemical potentials.
  • Item
    Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved Nernst-Planck-Poisson model for compressible electrolytes first proposed by Dreyer et al. in 2013. The model takes into account the elastic deformation of the medium. In particular, large pressure contributions near electrochemical interfaces induce an inherent coupling of mass and momentum transport. The model consists of convection-diffusion-reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity and the Poisson equation for the electrical potential. Cross-diffusion phenomena occur due to the principle of mass conservation. Moreover, the diffusion matrix (mobility matrix) has a zero eigenvalue, meaning that the system is degenerate parabolic. In this paper we establish the existence of a global-in-time weak solution for the full model, allowing for cross-diffusion and an arbitrary number of chemical reactions in the bulk and on the active boundary.