Search Results

Now showing 1 - 10 of 523
  • Item
    Optimized Deep Learning Model as a Basis for Fast UAV Mapping of Weed Species in Winter Wheat Crops
    (Basel : MDPI AG, 2021) de Camargo, Tibor; Schirrmann, Michael; Landwehr, Niels; Dammer, Karl-Heinz; Pflanz, Michael
    Weed maps should be available quickly, reliably, and with high detail to be useful for site-specific management in crop protection and to promote more sustainable agriculture by reducing pesticide use. Here, the optimization of a deep residual convolutional neural network (ResNet-18) for the classification of weed and crop plants in UAV imagery is proposed. The target was to reach sufficient performance on an embedded system by maintaining the same features of the ResNet-18 model as a basis for fast UAV mapping. This would enable online recognition and subsequent mapping of weeds during UAV flying operation. Optimization was achieved mainly by avoiding redundant computations that arise when a classification model is applied on overlapping tiles in a larger input image. The model was trained and tested with imagery obtained from a UAV flight campaign at low altitude over a winter wheat field, and classification was performed on species level with the weed species Matricaria chamomilla L., Papaver rhoeas L., Veronica hederifolia L., and Viola arvensis ssp. arvensis observed in that field. The ResNet-18 model with the optimized image-level prediction pipeline reached a performance of 2.2 frames per second with an NVIDIA Jetson AGX Xavier on the full resolution UAV image, which would amount to about 1.78 ha h−1 area output for continuous field mapping. The overall accuracy for determining crop, soil, and weed species was 94%. There were some limitations in the detection of species unknown to the model. When shifting from 16-bit to 32-bit model precision, no improvement in classification accuracy was observed, but a strong decline in speed performance, especially when a higher number of filters was used in the ResNet-18 model. Future work should be directed towards the integration of the mapping process on UAV platforms, guiding UAVs autonomously for mapping purpose, and ensuring the transferability of the models to other crop fields.
  • Item
    Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
    (Lausanne : Frontiers Media, 2018) Ryabchykov, Oleg; Popp, Jürgen; Bocklitz, Thomas W.
    Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis.
  • Item
    Ground-based noontime D-region electron density climatology over northern Norway
    (Katlenburg-Lindau : EGU, 2023) Renkwitz, Toralf; Sivakandan, Mani; Jaen, Juliana; Singer, Werner
    The bottom part of the Earth's ionosphere is the so-called D region, which is typically less dense than the upper regions. Despite the comparably lower electron density, the ionization state of the D region has a significant influence on signal absorption for propagating lower to medium radio frequencies. We present local noon climatologies of electron densities in the upper middle atmosphere (50-90km) at high latitudes as observed by an active radar experiment. The radar measurements cover 9 years (2014-2022) from the solar maximum of cycle 24 to the beginning of cycle 25. Reliable electron densities are derived by employing signal processing, applying interferometry methods, and applying the Faraday-International Reference Ionosphere (FIRI) model. For all years a consistent spring-fall asymmetry of the electron density pattern with a gradual increase during summer as well as a sharp decrease at the beginning of October was found. These findings are consistent with very low frequency (VLF) studies showing equivalent signatures for nearby propagation paths. It is suggested that the meridional circulation associated with downwelling in winter could cause enhanced electron densities through NO transport. However, this mechanism can not explain the reduction in electron density in early October.
  • Item
    Gradient and Generic systems in the space of fluxes, applied to reacting particle systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Renger, D.R. Michiel
    In a previous work we devised a framework to derive generalised gradient systems for an evolution equation from the large deviations of an underlying microscopic system, in the spirit of the Onsager-Machlup relations. Of particular interest is the case where the microscopic system consists of random particles, and the macroscopic quantity is the empirical measure or concentration. In this work we take the particle flux as the macroscopic quantity, which is related to the concentration via a continuity equation. By a similar argument the large deviations can induce a generalised gradient or Generic system in the space of fluxes. In a general setting we study how flux gradient or generic systems are related to gradient systems of concentrations. The arguments are explained by the example of reacting particle systems, which is later expanded to include spatial diffusion as well.
  • Item
    REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
    (Katlenburg-Lindau : Copernicus, 2021) Baumstark, Lavinia; Bauer, Nico; Benke, Falk; Bertram, Christoph; Bi, Stephen; Gong, Chen Chris; Dietrich, Jan Philipp; Dirnaichner, Alois; Giannousakis, Anastasis; Hilaire, Jerome; Klein, David; Koch, Johannes; Leimbach, Marian; Levesque, Antoine; Madeddu, Silvia; Malik, Aman; Merfort, Anne; Merfort, Leon; Odenweller, Adrian; Pehl, Michaja; Pietzcker, Robert C.; Piontek, Franziska; Rauner, Sebastian; Rodrigues, Renato; Rottoli, Marianna; Schreyer, Felix; Schultes, Anselm; Soergel, Bjoern; Soergel, Dominika; Strefler, Jessica; Ueckerdt, Falko; Kriegler, Elmar; Luderer, Gunnar
    This paper presents the new and now open-source version 2.1 of the REgional Model of INvestments and Development (REMIND). REMIND, as an integrated assessment model (IAM), provides an integrated view of the global energy–economy–emissions system and explores self-consistent transformation pathways. It describes a broad range of possible futures and their relation to technical and socio-economic developments as well as policy choices. REMIND is a multiregional model incorporating the economy and a detailed representation of the energy sector implemented in the General Algebraic Modeling System (GAMS). It uses non-linear optimization to derive welfare-optimal regional transformation pathways of the energy-economic system subject to climate and sustainability constraints for the time horizon from 2005 to 2100. The resulting solution corresponds to the decentralized market outcome under the assumptions of perfect foresight of agents and internalization of external effects. REMIND enables the analyses of technology options and policy approaches for climate change mitigation with particular strength in representing the scale-up of new technologies, including renewables and their integration in power markets. The REMIND code is organized into modules that gather code relevant for specific topics. Interaction between different modules is made explicit via clearly defined sets of input and output variables. Each module can be represented by different realizations, enabling flexible configuration and extension. The spatial resolution of REMIND is flexible and depends on the resolution of the input data. Thus, the framework can be used for a variety of applications in a customized form, balancing requirements for detail and overall runtime and complexity.
  • Item
    Studies on Stress Corrosion Cracking of Vit 105 Bulk Metallic Glass
    (Lausanne : Frontiers Media S.A., 2020) Gebert, A.; Geissler, D.; Pilz, S.; Uhlemann, M.; Davani, F.A.; Hilke, S.; Rösner, H.; Wilde, G.
    The project “Stress Corrosion Cracking of Zr-based Bulk Metallic Glasses” (SCC of Zr-BMGs) within PP1594 mainly dealt with mechanical–corrosive interactions and failure of this class of metastable materials. It focused on one of the most application-relevant zirconium (Zr)-BMG, Vit(reloy) 105, with composition Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%). Even though this BMG is known as an extraordinary glass former, the metallurgical processing is still a critical issue. In contrast to conventional processing, i.e., arc melting of master alloy ingots from single constituents, a different route using binary pre-alloys for the master alloys production was applied and led to superior mechanical properties upon mechanical testing under tensile and three-point-bending (3PB) conditions in air. As a reference and for a detailed understanding of failure, fracture, and cracking of Zr-based BMG in air, notched specimen 3PB experiments with in situ microscopic observation were done and the still controversial interpretation of the mechanical behavior of BMG in the framework of fracture mechanics was addressed. The specimen from the in situ 3PB tests served for transmission electron microscopy (TEM) investigations on the structural nature of shear bands in BMG on the atomistic scale. Altogether, complete crack paths could be observed and analyzed, and based on this, details of the shear band-driven crack growth are described. While in first SCC studies using a newly developed setup full cross section (3PB) bars were investigated, in recent in situ experiments, notched specimens were tested in 0.01 M NaCl, yielding strong evidence for a catastrophic failure due to hydrogen embrittlement (HE). The known susceptibility to pitting corrosion in halide-containing environments is only the initial stage for failure under SCC conditions. Once pitting is initiated, the local electrode potential is severely reduced. Further, the hydrolysis reaction of oxidized Zr4+ to zirconyl ions ZrO2+ during local BMG dissolution produces H+ and, thus, a local acidic environment that enables proton reduction and hydrogen absorption in the stressed BMG region. The peculiar failure and fracture surface characteristics as well as the proven local reduction of the pH value in the vicinity of the notch during in situ experiments clearly account for the proposed HE-SCC failure mechanism.
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    PeakTree: A framework for structure-preserving radar Doppler spectra analysis
    (Göttingen : Copernicus GmbH, 2019) Radenz, M.; Bühl, J.; Seifert, P.; Griesche, H.; Engelmann, R.
    Clouds are frequently composed of more than one particle population even at the smallest scales. Cloud radar observations frequently contain information on multiple particle species in the observation volume when there are distinct peaks in the Doppler spectrum. Multi-peaked situations are not taken into account by established algorithms, which only use moments of the Doppler spectrum. In this study, we propose a new algorithm that recursively represents the subpeaks as nodes in a binary tree. Using this tree data structure to represent the peaks of a Doppler spectrum, it is possible to drop all a priori assumptions on the number and arrangement of subpeaks. The approach is rigid, unambiguous and can provide a basis for advanced analysis methods. The applicability is briefly demonstrated in two case studies, in which the tree structure was used to investigate particle populations in Arctic multilayered mixed-phase clouds, which were observed during the research vessel Polarstern expedition PS106 and the Atmospheric Radiation Measurement Program BAECC campaign.
  • Item
    Galilean Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    (Basel : MDPI, 2023) Müller, Rüdiger; Landstorfer, Manuel
    In this work, the balance equations of non-equilibrium thermodynamics are coupled to Galilean limit systems of the Maxwell equations, i.e., either to (i) the quasi-electrostatic limit or (ii) the quasi-magnetostatic limit. We explicitly consider a volume (Formula presented.), which is divided into (Formula presented.) and (Formula presented.) by a possibly moving singular surface S, where a charged reacting mixture of a viscous medium can be present on each geometrical entity (Formula presented.). By the restriction to the Galilean limits of the Maxwell equations, we achieve that only subsystems of equations for matter and electromagnetic fields are coupled that share identical transformation properties with respect to observer transformations. Moreover, the application of an entropy principle becomes more straightforward and finally helps estimate the limitations of the more general approach based the full set of Maxwell equations. Constitutive relations are provided based on an entropy principle, and particular care is taken in the analysis of the stress tensor and the momentum balance in the general case of non-constant scalar susceptibility. Finally, we summarise the application of the derived model framework to an electrochemical system with surface reactions.
  • Item
    Measuring Success: Improving Assessments of Aggregate Greenhouse Gas Emissions Reduction Goals
    (Chichester : John Wiley and Sons Inc, 2018) Jeffery, M.L.; Gütschow, J.; Rocha, M.R.; Gieseke, R.
    Long-term success of the Paris Agreement will depend on the effectiveness of the instruments that it sets in place. Key among these are the nationally determined contributions (NDCs), which elaborate country-specific goals for mitigating and adapting to climate change. One role of the academic community and civil society in supporting the Paris Agreement is to assess the consistency between the near-term action under NDCs and the agreement's long-term goals, thereby providing insight into the chances of long-term success. Here we assess the strengths and weaknesses of current methods to estimate the effectiveness of the mitigation component of NDCs and identify the scientific and political advances that could be made to improve confidence in evaluating NDCs against the long-term goals. Specifically, we highlight (1) the influence of post-2030 assumptions on estimated 21st century warming, (2) uncertainties arising from the lack of published integrated assessment modeling scenarios with long-term, moderate effort reflecting a continuation of the current political situation, and (3) challenges in using a carbon budget approach. We further identify aspects that can be improved in the coming years: clearer communication regarding the meaning, likelihood, and timeframe of NDC consistent warming estimates; additional modeling of long-term, moderate action scenarios; and the identification of metrics for assessing progress that are not based solely on emissions, such as infrastructure investment, energy demand, or installed power capacity.