Search Results

Now showing 1 - 10 of 515
  • Item
    Micro-/nanostructured alumina as model surface to study topography effects on cell-surface interactions
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2011) Aktas, Cenk; Martinez Miró, Martina; Lee, Juseok; Brück, Stefan; Veith, Michael
    [no abstract available]
  • Item
    Soft Inkjet Circuits: Rapid Multi-Material Fabrication of Soft Circuits using a Commodity Inkjet Printer
    (New York City : Association for Computing Machinery, 2019) Khan, Arshad; Roo, Joan Sol; Kraus, Tobias; Steimle, Jürgen
    Despite the increasing popularity of soft interactive devices, their fabrication remains complex and time consuming. We contribute a process for rapid do-it-yourself fabrication of soft circuits using a conventional desktop inkjet printer. It supports inkjet printing of circuits that are stretchable, ultrathin, high resolution, and integrated with a wide variety of materials used for prototyping. We introduce multi-ink functional printing on a desktop printer for realizing multi-material devices, including conductive and isolating inks. We further present DIY techniques to enhance compatibility between inks and substrates and the circuits' elasticity. This enables circuits on a wide set of materials including temporary tattoo paper, textiles, and thermoplastic. Four application cases demonstrate versatile uses for realizing stretchable devices, e-textiles, body-based and re-shapeable interfaces.
  • Item
    Effect of fluoride mouthrinses and stannous ions on the erosion protective properties of the in situ pellicle
    (Berlin : Springer Nature, 2019) Kensche, A.; Buschbeck, E.; König, B.; Koch, M.; Kirsch, J.; Hannig, C.; Hannig, M.
    The particular feature of this study is the investigation of effects of pure fluoride- or stannous ions based mouthrinses on the erosion protective properties and the ultrastructure of the in situ pellicle (12 volunteers). Experimental solutions were prepared either from 500 ppm NaF, SMFP, AmF or SnF 2 or 1563 ppm SnCl 2 , respectively. After 1 min of in situ pellicle formation on bovine enamel slabs, rinses with one of the preparations were performed for 1 min and intraoral specimens’ exposure was continued for 28 min. Native enamel slabs and rinses with bidestilled water served as controls. After oral exposure, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s and kinetics of calcium- and phosphate release were measured photometrically; representative samples were analysed by TEM and EDX. All mouthrinses reduced mineral loss compared to the native 30-min pellicle. The effect was pH-dependent and significant at all pH values only for the tin-containing mouthrinses. No significant differences were observed between the SnF 2 - and the SnCl 2 -containing solutions. TEM/EDX confirmed ultrastructural pellicle modifications. SnF 2 appears to be the most effective type of fluoride to prevent erosive enamel demineralisation. The observed effects primarily have to be attributed to the stannous ions’ content. © 2019, The Author(s).
  • Item
    Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes
    (Cambridge : Royal Society of Chemistry, 2016) Zeiger, Marco; Fleischmann, Simon; Krüner, Benjamin; Tolosa, Aura; Bechtel, Stephan; Baltes, Mathias; Schreiber, Anna; Moroni, Riko; Vierrath, Severin; Thiele, Simon; Presser, Volker
    Manganese oxide presents very promising electrochemical properties as an electrode material in supercapacitors, but there remain important open questions to guide further development of the complex manganese oxide/carbon/electrolyte system. Our work addresses specifically the influence of carbon ordering and the difference between outer and inner porosity of carbon particles for the application in aqueous 1 M Na2SO4 and 1 M LiClO4 in acetonitrile. Birnessite-type manganese oxide was hydrothermally hybridized on two kinds of carbon onions with only outer surface area and different electrical conductivity, and conventional activated carbon with a high inner porosity. Carbon onions with a high degree of carbon ordering, high conductivity, and high outer surface area were identified as the most promising material, yielding 179 F g−1. Pore blocking in activated carbon yields unfavorable electrochemical performances. The highest specific energy of 16.4 W h kg−1 was measured for a symmetric full-cell arrangement of manganese oxide coated high temperature carbon onions in the organic electrolyte. High stability during 10 000 cycles was achieved for asymmetric full-cells, which proved as a facile way to enhance the electrochemical performance stability.
  • Item
    Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors
    (Weinheim [u.a.] : Wiley-VCH, 2019) Abbas, Qamar; Gollas, Bernhard; Presser, Volker
    The Faradaic processes related to electrochemical water reduction at the nanoporous carbon electrode under negative polarization are reduced when the concentration of aqueous sodium nitrate (NaNO3) is increased or the temperature is decreased. This effect enhances the relative contribution of ion electrosorption to the total charge storage process. Hydrogen chemisorption is reduced in aqueous 8.0 m NaNO3 due to the low degree of hydration of the Na+ cation; consequently, less free water is available for redox contributions, driving the system to exhibit electrical double-layer capacitive characteristics. Hydrogen adsorption/desorption is facilitated in 1.0 m NaNO3 due to the high molar ratio. The excess of water shifts the local pH in carbon nanopores to neutral values, giving rise to a high overpotential for dihydrogen evolution in the latter. The dilution effect on local pH shift in 1.0 m NaNO3 can be reduced by decreasing the temperature. A symmetric activated carbon cell assembled with 8.0 m NaNO3 exhibits a high capacitance and coulombic efficiency, a larger contribution of ion electrosorption to the overall charge storage process, and a stable capacitance performance at 1.6 V. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model
    (London : BioMed Central, 2015) Kroker, Matthias; Sydlik, Ulrich; Autengruber, Andrea; Cavelius, Christian; Weighardt, Heike; Kraegeloh, Annette; Unfried, Klaus
    Background Exposure of the airways to carbonaceous nanoparticles can contribute to the development of immune diseases both via the aggravation of the allergic immune response in sensitized individuals and by adjuvant mechanisms during the sensitization against allergens. The cellular and molecular mechanisms involved in these adverse pathways are not completely understood. We recently described that the reduction of carbon nanoparticle-induced lung inflammation by the application of the compatible solute ectoine reduced the aggravation of the allergic response in an animal system. In the current study we investigated the influence of carbon nanoparticles on the sensitization of animals to ovalbumin via the airways. Ectoine was used as a preventive strategy against nanoparticle-induced neutrophilic lung inflammation. Methods Balb/c mice were repetitively exposed to the antigen ovalbumin after induction of airway inflammation by carbon nanoparticles, either in the presence or in the absence of ectoine. Allergic sensitization was monitored by measurement of immunoglobulin levels and immune responses in lung and lung draining lymph nodes after challenge. Furthermore the role of dendritic cells in the effect of carbon nanoparticles was studied in vivo in the lymph nodes but also in vitro using bone marrow derived dendritic cells. Results Animals exposed to antigen in the presence of carbon nanoparticles showed increased effects with respect to ovalbumin sensitization, to the allergic airway inflammation after challenge, and to the specific TH2 response in the lymph nodes. The presence of ectoine during the sensitization significantly reduced these parameters. The number of antigen-loaded dendritic cells in the draining lymph nodes was identified as a possible cause for the adjuvant effect of the nanoparticles. In vitro assays indicate that the direct interaction of the particles with dendritic cells is not able to trigger CCR7 expression, while this endpoint is achieved by lung lavage fluid from nanoparticle-exposed animals. Conclusions Using the intervention strategy of applying ectoine into the airways of animals we were able to demonstrate the relevance of neutrophilic lung inflammation for the adjuvant effect of carbon nanoparticles on allergic sensitization.n.
  • Item
    A novel precursor system and its application to produce tin doped indium oxide
    (Cambridge : Royal Society of Chemistry, 2011) Veith, Michael; Bubel, Carsten; Zimmer, Michael
    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me2In(OtBu)3Sn (Me = CH3, OtBu = OC(CH3)3), which is in equilibrium with an excess of Me2In(OtBu). This quasi single-source precursor is applied in a sol–gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state 119Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
  • Item
    Cell adhesion on RGD-displaying knottins with varying numbers of tryptophan amino acids to tune the affinity for assembly on cucurbit[8]uril surfaces
    (Washington D.C. : American Chemical Society, 2017) Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal
    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]-uril (CB[8]) and surface-tethered methylviologen (MV2+). The binding affinity of the knottins with CB[8] and MV2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.
  • Item
    Kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr
    (Saarbrücken : Leibniz-Institut für neue Materialien, 2009) Egberts, Philip; Bennewitz, Roland
    The incipient stages of plasticity in KBr single crystals have been examined in ultrahigh vacuum by means of Atomic Force Microscopy and Kelvin Probe Force Microscopy (KPFM). Conducting diamond-coated tips have been used to both indent the crystals and image the resulting plastic deformation. KPFM reveals that edge dislocations intersecting the surface carry a negative charge similar to kinks in surface steps, while screw dislocations show no contrast. Weak topographic features extending in <110> direction from the indentation are identified by atomic-resolution imaging to be pairs of edge dislocations of opposite sign, separated by a distance similar to the indenter radius. They indicate the glide of two parallel {110} planes perpendicular to the surface, a process that allows for a slice of KBr to be pushed away from the indentation site.