Search Results

Now showing 1 - 10 of 163
  • Item
    Microfluidic colloid filtration
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias
    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.
  • Item
    Dislocations in ceramic electrolytes for solid-state Li batteries
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Porz, L.; Knez, D.; Scherer, M.; Ganschow, S.; Kothleitner, G.; Rettenwander, D.
    High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB.
  • Item
    Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Ali, Nairveen; Bolenz, Christian; Todenhöfer, Tilman; Stenzel, Arnulf; Deetmar, Peer; Kriegmair, Martin; Knoll, Thomas; Porubsky, Stefan; Hartmann, Arndt; Popp, Jürgen; Kriegmair, Maximilian C.; Bocklitz, Thomas
    Bladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths worldwide. Recently, blue light (BL) cystoscopy-based photodynamic diagnosis was introduced as a unique technology to enhance the detection of bladder cancer, particularly for the detection of flat and small lesions. Here, we aim to demonstrate a BL image-based artificial intelligence (AI) diagnostic platform using 216 BL images, that were acquired in four different urological departments and pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter, four pre-trained convolution neural networks were utilized to predict image malignancy, invasiveness, and grading. The results indicated that the classification sensitivity and specificity of malignant lesions are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are 88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of AI based classification of BL images allowing for better treatment decisions and potentially higher detection rates.
  • Item
    Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-8-24) Gandhirajan, Rajesh Kumar; Rödder, Katrin; Bodnar, Yana; Pasqual-Melo, Gabriella; Emmert, Steffen; Griguer, Corinne E.; Weltmann, Klaus-Dieter; Bekeschus, Sander
    Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.
  • Item
    Manipulation of small particles at solid liquid interface: Light driven diffusioosmosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana
    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
  • Item
    Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S.V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin
    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers and various therapeutics.
  • Item
    Electromagnon excitation in cupric oxide measured by Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Knight, Sean; Prabhakaran, Dharmalingam; Binek, Christian; Schubert, Mathias
    Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a–c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.
  • Item
    The sequence to hydrogenate coronene cations: A journey guided by magic numbers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas
    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
  • Item
    Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Sandvik, Oscar S.; Friberg, Johan; Martinsson, Bengt G.; van Velthoven, Peter F. J.; Hermann, Markus; Zahn, Andreas
    Aerosol composition and optical scattering from particles in the lowermost stratosphere (LMS) have been studied by comparing in-situ aerosol samples from the IAGOS-CARIBIC passenger aircraft with vertical profiles of aerosol backscattering obtained from the CALIOP lidar aboard the CALIPSO satellite. Concentrations of the dominating fractions of the stratospheric aerosol, being sulphur and carbon, have been obtained from post-flight analysis of IAGOS-CARIBIC aerosol samples. This information together with literature data on black carbon concentrations were used to calculate the aerosol backscattering which subsequently is compared with measurements by CALIOP. Vertical optical profiles were taken in an altitude range of several kilometres from and above the northern hemispheric extratropical tropopause for the years 2006-2014. We find that the two vastly different measurement platforms yield different aerosol backscattering, especially close to the tropopause where the influence from tropospheric aerosol is strong. The best agreement is found when the LMS is affected by volcanism, i.e., at elevated aerosol loadings. At background conditions, best agreement is obtained some distance (>2 km) above the tropopause in winter and spring, i.e., at likewise elevated aerosol loadings from subsiding aerosol-rich stratospheric air. This is to our knowledge the first time the CALIPSO lidar measurements have been compared to in-situ long-term aerosol measurements. © 2019, The Author(s).
  • Item
    Templating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Linkhorst, John; Lölsberg, Jonas; Thill, Sebastian; Lohaus, Johannes; Lüken, Arne; Naegele, Gerhard; Wessling, Matthias
    Filter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake’s behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane’s morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.