Search Results

Now showing 1 - 10 of 24
Loading...
Thumbnail Image
Item

When optimization for governing human-environment tipping elements is neither sustainable nor safe

2018, Barfuss, W., Donges, J.F., Lade, S.J., Kurths, J.

Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.

Loading...
Thumbnail Image
Item

Spectral field mapping in plasmonic nanostructures with nanometer resolution

2018, Krehl, J., Guzzinati, G., Schultz, J., Potapov, P., Pohl, D., Martin, J., Verbeeck, J., Fery, A., Büchner, B., Lubk, A.

Plasmonic nanostructures and -devices are rapidly transforming light manipulation technology by allowing to modify and enhance optical fields on sub-wavelength scales. Advances in this field rely heavily on the development of new characterization methods for the fundamental nanoscale interactions. However, the direct and quantitative mapping of transient electric and magnetic fields characterizing the plasmonic coupling has been proven elusive to date. Here we demonstrate how to directly measure the inelastic momentum transfer of surface plasmon modes via the energy-loss filtered deflection of a focused electron beam in a transmission electron microscope. By scanning the beam over the sample we obtain a spatially and spectrally resolved deflection map and we further show how this deflection is related quantitatively to the spectral component of the induced electric and magnetic fields pertaining to the mode. In some regards this technique is an extension to the established differential phase contrast into the dynamic regime. © 2018, The Author(s).

Loading...
Thumbnail Image
Item

Publisher Correction: Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters (Nature communications (2017) 8 1 (1181))

2018, Passig, Johannes, Zherebtsov, Sergey, Irsig, Robert, Arbeiter, Mathias, Peltz, Christian, Göde, Sebastian, Skruszewicz, Slawomir, Meiwes-Broer, Karl-Heinz, Tiggesbäumker, Josef, Kling, Matthias F., Fennel, Thomas

The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article. The original PDF version of this Article contained an error in Equation 1. A dot over the first occurrence of the variable ri was missing, and incorrectly read: (Formula Presented). The correct form of Equation 1 is as follows: (Formula Presented). This has now been corrected in the PDF version of the Article. The HTML version was correct from the time of publication. The original HTML version of this Article contained errors in Equation 2 and Equation 4. In Equation 2, a circle over the first occurrence of the variable ri replaced the intended dot, and incorrectly read: (Formula Presented). The correct form of Equation 2 is as follows: (Formula Presented). In Equation 4, circles over the first and fifth occurrences of the variable ri replaced the intended dots, and incorrectly read: (Formula Presented). The correct form of Equation 4 is as follows: (Formula Presented). This has now been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

Loading...
Thumbnail Image
Item

Anisotropic photoemission time delays close to a Fano resonance

2018, Cirelli, Claudio, Marante, Carlos, Heuser, Sebastian, Petersson, C.L.M., Galán, Álvaro Jiménez, Argenti, Luca, Zhong, Shiyang, Busto, David, Isinger, Marcus, Nandi, Saikat, Maclot, Sylvain, Rading, Linnea, Johnsson, Per, Gisselbrecht, Mathieu, Lucchini, Matteo, Gallmann, Lukas, Dahlström, J. Marcus, Lindroth, Eva, L’Huillier, Anne, Martín, Fernando, Keller, Ursula

Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20-40 eV spectral range, in the vicinity of the 3s -1 np autoionizing resonances. We present measurements of the differential photoionization cross section and extract energy and angle-dependent atomic time delays with an attosecond interferometric method. With the support of a theoretical model, we are able to attribute a large part of the measured time delay anisotropy to the presence of autoionizing resonances, which not only distort the phase of the emitted photoelectron wave packet but also introduce an angular dependence.

Loading...
Thumbnail Image
Item

In situ single-shot diffractive fluence mapping for X-ray free-electron laser pulses

2018, Schneider, Michael, Günther, Christian M., Pfau, Bastian, Capotondi, Flavio, Manfredda, Michele, Zangrando, Marco, Mahne, Nicola, Raimondi, Lorenzo, Pedersoli, Emanuele, Naumenko, Denys, Eisebitt, Stefan

Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.

Loading...
Thumbnail Image
Item

Publisher Correction: Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source (Nature communications (2017) 8 1 (493))

2018, Rupp, Daniela, Monserud, Nils, Langbehn, Bruno, Sauppe, Mario, Zimmermann, Julian, Ovcharenko, Yevheniy, Möller, Thomas, Frassetto, Fabio, Poletto, Luca, Trabattoni, Andrea, Calegari, Francesca, Nisoli, Mauro, Sander, Katharina, Peltz, Christian, Vrakking, Marc J., Fennel, Thomas, Rouzée, Arnaud

In the original version of this Article, the affiliation for Luca Poletto was incorrectly given as 'European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Hamburg, Germany', instead of the correct 'CNR, Istituto di Fotonica e Nanotecnologie Padova, Via Trasea 7, 35131 Padova, Italy'. This has now been corrected in both the PDF and HTML versions of the Article.

Loading...
Thumbnail Image
Item

Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers

2018, Zhou, J., Zhu, H., Liu, T.-H., Song, Q., He, R., Mao, J., Liu, Z., Ren, W., Liao, B., Singh, D.J., Ren, Z., Chen, G.

Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.

Loading...
Thumbnail Image
Item

Competition between proton transfer and intermolecular Coulombic decay in water

2018, Richter, Clemens, Hollas, Daniel, Saak, Clara-Magdalena, Förstel, Marko, Miteva, Tsveta, Mucke, Melanie, Björneholm, Olle, Sisourat, Nicolas, Slavíček, Petr, Hergenhahn, Uwe

Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron–electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40–50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12–52 fs for small water clusters.

Loading...
Thumbnail Image
Item

Two-thirds of global cropland area impacted by climate oscillations

2018, Heino, M., Puma, M.J., Ward, P.J., Gerten, D., Heck, V., Siebert, S., Kummu, M.

The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter 2015-2016, leading to food insecurity in many parts of Africa, Asia and Latin America. Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are known to impact crop yields worldwide. Here we assess for the first time in a unified framework the relationships between ENSO, IOD and NAO and simulated crop productivity at the sub-country scale. Our findings reveal that during 1961-2010, crop productivity is significantly influenced by at least one large-scale climate oscillation in two-thirds of global cropland area. Besides observing new possible links, especially for NAO in Africa and the Middle East, our analyses confirm several known relationships between crop productivity and these oscillations. Our results improve the understanding of climatological crop productivity drivers, which is essential for enhancing food security in many of the most vulnerable places on the planet.

Loading...
Thumbnail Image
Item

Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal

2018, Seiro, S., Jiao, L., Kirchner, S., Hartmann, S., Friedemann, S., Krellner, C., Geibel, C., Si, Q., Steglich, F., Wirth, S.

Strong electron correlations can give rise to extraordinary properties of metals with renormalized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be destroyed and non-Fermi liquid behavior ensues. YbRh2Si2 is a prototypical correlated metal exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle destruction at a field-induced quantum critical point. Here we show how, upon lowering the temperature, Kondo lattice coherence develops at zero field and finally gives way to non-Fermi liquid electronic excitations. By measuring the single-particle excitations through scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial temperature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic field, the width of this peak is minimized in the quantum critical regime. Our results demonstrate that the lattice Kondo correlations have to be sufficiently developed before quantum criticality can set in.