Search Results

Now showing 1 - 2 of 2
  • Item
    Failure mechanism analysis based on laser-based surface treatments for aluminum-polyamide laser joining
    (Amsterdam [u.a.] : Elsevier, 2021) Elahi, Amne; Koch, Marcus; Bardon, Julien; Addiego, Frédéric; Plapper, Peter
    The development of strong metal to polymer assemblies is currently an important research subject thanks to its prominence to develop lightweight structures. Furthermore, laser welding is known to be a fast, reliable, and versatile joining process, and it was demonstrated recently that it can be applied to such metal to polymer systems. To enhance the mechanical properties of the laser-joined aluminum-polyamide (Al-PA) specimens, laser polishing and laser ablation processes have been implemented on the aluminum surface before joining. The polyamide surface was also treated with the laser beam, separately. The surfaces were tested by several characterization techniques before and after each surface treatment. Then aluminum and polyamide samples with different surface treatments have been joined with an identical laser joining process. The mechanical properties of the joints in single lap shear configuration are reported and the failure mechanisms are discussed based on micro-computed x-ray tomography imaging of joined specimens and microscopic analysis before failure. Results show that both surface treatments of aluminum significantly improve the shear load of the joint; however, with different failure mechanisms. Polyamide surface treatment and increasing degree of crystallinity are effective when combined with the laser polishing of the Al surface. This combination is responsible for further enhancement of the shear load of the joint to the limit of base metal strength which is approximately 60 % improvement compared to the untreated samples. Finally, energy dispersive X-ray mapping shows the physicochemical bonding between aluminum oxide and polyamide at the interface.
  • Item
    Adhesion of a cylindrical punch with elastic properties that vary radially
    (Amsterdam [u.a.] : Elsevier, 2023) Kossa, Attila; Hensel, René; McMeeking, Robert M.
    The adhesion of a rigid substrate and an adhered straight cylindrical punch with a non-homogeneous elastic modulus is analyzed. The stress distributions are obtained along the interface for various elastic modulus gradients. The calculations are performed in the commercial finite element software Abaqus using a user material (UMAT) subroutine to control the dependence of Young's modulus on the radial position. The UMAT code is shared in the paper. The results reveal that the decreasing elastic modulus toward the perimeter of the punch can be used to significantly reduce the normal stress magnitudes in the singularity domain, which leads to stronger adhesion. The increase in the adhesion strength is characterized numerically. The effect of Poisson's ratio is also analyzed.