Search Results

Now showing 1 - 10 of 32
  • Item
    Separation, characterization, and handling of microalgae by dielectrophoresis
    (Basel : MDPI, 2020) Abt, Vinzenz; Gringel, Fabian; Han, Arum; Neubauer, Peter; Birkholz, Mario
    Microalgae biotechnology has a high potential for sustainable bioproduction of diverse highvalue biomolecules. Some of the main bottlenecks in cell-based bioproduction, and more specifically in microalgae-based bioproduction, are due to insufficient methods for rapid and efficient cell characterization, which contributes to having only a few industrially established microalgal species in commercial use. Dielectrophoresis-based microfluidic devices have been long established as promising tools for label-free handling, characterization, and separation of broad ranges of cells. The technique is based on differences in dielectric properties and sizes, which results in different degrees of cell movement under an applied inhomogeneous electrical field. The method has also earned interest for separating microalgae based on their intrinsic properties, since their dielectric properties may significantly change during bioproduction, in particular for lipid-producing species. Here, we provide a comprehensive review of dielectrophoresis-based microfluidic devices that are used for handling, characterization, and separation of microalgae. Additionally, we provide a perspective on related areas of research in cell-based bioproduction that can benefit from dielectrophoresis-based microdevices. This work provides key information that will be useful for microalgae researchers to decide whether dielectrophoresis and which method is most suitable for their particular application. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Low Complexity Radar Gesture Recognition Using Synthetic Training Data
    (Basel : MDPI, 2022) Zhao, Yanhua; Sark, Vladica; Krstic, Milos; Grass, Eckhard
    Developments in radio detection and ranging (radar) technology have made hand gesture recognition feasible. In heat map-based gesture recognition, feature images have a large size and require complex neural networks to extract information. Machine learning methods typically require large amounts of data and collecting hand gestures with radar is time- and energy-consuming. Therefore, a low computational complexity algorithm for hand gesture recognition based on a frequency-modulated continuous-wave (FMCW) radar and a synthetic hand gesture feature generator are proposed. In the low computational complexity algorithm, two-dimensional Fast Fourier Transform is implemented on the radar raw data to generate a range-Doppler matrix. After that, background modelling is applied to separate the dynamic object and the static background. Then a bin with the highest magnitude in the range-Doppler matrix is selected to locate the target and obtain its range and velocity. The bins at this location along the dimension of the antenna can be utilised to calculate the angle of the target using Fourier beam steering. In the synthetic generator, the Blender software is used to generate different hand gestures and trajectories and then the range, velocity and angle of targets are extracted directly from the trajectory. The experimental results demonstrate that the average recognition accuracy of the model on the test set can reach 89.13% when the synthetic data are used as the training set and the real data are used as the test set. This indicates that the generation of synthetic data can make a meaningful contribution in the pre-training phase.
  • Item
    Design and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD
    (Basel : MDPI, 2018) Soltani Zarrin, Pouya; Jamal, Farabi Ibne; Guha, Subhajit; Wessel, Jan; Kissinger, Dietmar; Wenger, Christian
    The viscosity variation of sputum is a common symptom of the progression of Chronic Obstructive Pulmonary Disease (COPD). Since the hydration of the sputum defines its viscosity level, dielectric sensors could be used for the characterization of sputum samples collected from patients for early diagnosis of COPD. In this work, a CMOS-based dielectric sensor for the real-time monitoring of sputum viscosity was designed and fabricated. A proper packaging for the ESD-protection and short-circuit prevention of the sensor was developed. The performance evaluation results show that the radio frequency sensor is capable of measuring dielectric constant of biofluids with an accuracy of 4.17%. Integration of this sensor into a portable system will result in a hand-held device capable of measuring viscosity of sputum samples of COPD-patients for diagnostic purposes.
  • Item
    The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation
    (Basel : MDPI, 2019) Lux, Helge; Edling, Matthias; Lucci, Massimiliano; Kitzmann, Julia; Villringer, Claus; Siemroth, Peter; De Matteis, Fabio; Schrader, Sigurd
    Diamond-like carbon (DLC) films were deposited using two different types of high current arc evaporation. The first process used a magnetic particle filter to remove droplets from the plasma. For the second process, the samples were put into a metallic cage which was placed directly above the plasma source. For both processes, we varied the substrate temperature from 21 to 350 °C in order to investigate the temperature effect. The samples were characterized using SEM, AFM, XPS, Raman Spectroscopy, Ellipsometry, Photometry, and Nano Indentation in order to compare both methods of deposition and provide a careful characterization of such DLC films. We found that the sp3 content and the hardness can be precisely adjusted by changing the substrate temperature. Furthermore, in the case of unfiltered deposition, the optical constants can be shifted in the direction of higher absorbance in order to produce black and hard carbon coatings. © 2019 by the authors.
  • Item
    Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode
    (Basel : MDPI, 2018) Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian
    Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μS was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
  • Item
    Continuously operating biosensor and its integration into a hermetically sealed medical implant
    (Basel : MDPI, 2016) Birkholz, Mario; Glogener, Paul; Glös, Franziska; Basmer, Thomas; Theuer, Lorenz
    An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. The sensor chip operates via the principle of affinity viscometry, which is realized by a fully embedded biomedical microelectromechanical systems (BioMEMS) prepared in 0.25-µm complementary metal–oxide–semiconductor (CMOS)/BiCMOS technology. Communication with a base station is established in the 402–405 MHz band used for medical implant communication services (MICS). The implant shall operate within the interstitial tissue, and the hermetical sealing of the electronic system against interaction with the body fluid is established using titanium housing. Only the sensor chip and the antenna are encapsulated in an epoxy header closely connected to the metallic housing. The study demonstrates that biosensor implants for the sensing of low-molecular-weight metabolites in the interstitial may successfully rely on components already established in cardiovascular implantology.
  • Item
    Miniature switchable millimeter-wave BiCMOS low-noise amplifier at 120/140 GHz using an HBT switch
    (Basel : MDPI, 2019) Heredia, Julio; Ribó, Miquel; Pradell, Lluís; Wipf, Selin Tolunay; Göritz, Alexander; Wietstruck, Matthias; Wipf, Christian; Kaynak, Mehmet
    A 120-140 GHz frequency-switchable, very compact low-noise amplifier (LNA) fabricated in a 0.13 µm SiGe:C BiCMOS technology is proposed. A single radio-frequency (RF) switch composed of three parallel hetero junction bipolar transistors (HBTs) in a common-collector configuration and a multimodal three-line microstrip structure in the input matching network are used to obtain a LNA chip of miniaturized size. A systematic design procedure is applied to obtain a perfectly balanced gain and noise figure in both frequency states (120 GHz and 140 GHz). The measured gain and noise figure are 14.2/14.2 dB and 8.2/8.2 dB at 120/140 GHz respectively, in very good agreement with circuit/electromagnetic co-simulations. The LNA chip and core areas are 0.197 mm2 and 0.091 mm2, respectively, which supposes an area reduction of 23.4% and 15.2% compared to other LNAs reported in this frequency band. The experimental results validate the design procedure and its analysis. © 2019 by the authors.
  • Item
    A Review on Passive and Integrated Near-Field Microwave Biosensors
    (Basel : MDPI, 2017) Guha, Subhajit; Jamal, Farabi Ibne; Wenger, Christian
    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper.
  • Item
    An Approach to Ring Resonator Biosensing Assisted by Dielectrophoresis: Design, Simulation and Fabrication
    (Basel : MDPI, 2020) Henriksson, Anders; Kasper, Laura; Jäger, Matthias; Neubauer, Peter; Birkholz, Mario
    The combination of extreme miniaturization with a high sensitivity and the potential to be integrated in an array form on a chip has made silicon-based photonic microring resonators a very attractive research topic. As biosensors are approaching the nanoscale, analyte mass transfer and bonding kinetics have been ascribed as crucial factors that limit their performance. One solution may be a system that applies dielectrophoretic forces, in addition to microfluidics, to overcome the diffusion limits of conventional biosensors. Dielectrophoresis, which involves the migration of polarized dielectric particles in a non-uniform alternating electric field, has previously been successfully applied to achieve a 1000-fold improved detection efficiency in nanopore sensing and may significantly increase the sensitivity in microring resonator biosensing. In the current work, we designed microring resonators with integrated electrodes next to the sensor surface that may be used to explore the effect of dielectrophoresis. The chip design, including two different electrode configurations, electric field gradient simulations, and the fabrication process flow of a dielectrohoresis-enhanced microring resonator-based sensor, is presented in this paper. Finite element method (FEM) simulations calculated for both electrode configurations revealed ?E2 values above 1017 V2m-3 around the sensing areas. This is comparable to electric field gradients previously reported for successful interactions with larger molecules, such as proteins and antibodies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Towards CMOS integrated microfluidics using dielectrophoretic immobilization
    (Basel : MDPI, 2019) Ettehad, Honeyeh Matbaechi; Yadav, Rahul Kumar; Guha, Subhajit; Wenger, Christian
    Dielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors. The dielectrophoretically immobilization of micron and submicron size particles using interdigitated electrode (IDE) arrays is studied by finite element simulations. The CMOS compatible IDEs have been placed into the silicon microfluidic channel. A rigorous study of the DEP force actuation, the IDE’s geometrical structure, and the fluid dynamics are crucial for enabling the complete platform for CMOS integrated microfluidics and detection of micron and submicron-sized particle ranges. The design of the IDEs is performed by robust finite element analyses to avoid time-consuming and costly fabrication processes. To analyze the preliminary microfluidic test vehicle, simulations were first performed with non-biological particles. To produce DEP force, an AC field in the range of 1 to 5 V (peak-to-peak) is applied to the IDE. The impact of the effective external and internal properties, such as actuating DEP frequency and voltage, fluid flow velocity, and IDE’s geometrical parameters are investigated. The IDE based system will be used to immobilize and sense particles simultaneously while flowing through the microfluidic channel. The sensed particles will be detected using the capacitive sensing feature of the biosensor. The sensing and detecting of the particles are not in the scope of this paper and will be described in details elsewhere. However, to provide a complete overview of this system, the working principles of the sensor, the readout detection circuit, and the integration process of the silicon microfluidic channel are briefly discussed. © 2019 by the authors.