Search Results

Now showing 1 - 10 of 110
  • Item
    The usability of a pressure-indicating film to measure the teat load caused by a collapsing liner
    (Basel : MDPI, 2016) Demba, Susanne; Sabrina, Sabrina; Ammon, Christian; Rose-Meierhöfer, Sandra
    Prevention of damage to the teat and mastitis requires determination of the teat load caused by a collapsing liner. The aim of this study was to test a pressure-indicating film designed to measure the pressure between a collapsing liner and artificial teats. The Ultra Super Low and the Extreme Low pressure-indicating films were tested on two types of artificial teat. The experiments were performed with a conventional milking cluster equipped with round silicone liners. For each teat and film type, 30 repetitions were performed. Each repetition was performed with a new piece of film. Kruskal-Wallis tests were performed to detect differences between the pressure values for the different teats. The area of regions where pressure-indication color developed was calculated to determine the most suitable film type. Both film types measured the pressure applied to both artificial teats by the teat cup liner. Thus, the pressure-indicating films can be used to measure the pressure between a collapsing liner and an artificial teat. Based on the results of the present investigation, a pressure-indicating film with the measurement ranges of both film types combined would be an optimal tool to measure the overall pressure between an artificial teat and a collapsing liner.
  • Item
    RES-Q-Trace: A Mobile CEAS-Based Demonstrator for Multi-Component Trace Gas Detection in the MIR
    (Basel : MDPI, 2018-6-27) Lang, Norbert; Macherius, Uwe; Zimmermann, Henrik; Glitsch, Sven; Wiese, Mathias; Röpcke, Jürgen; van Helden, Jean-Pierre H.
    Sensitive trace gas detection plays an important role in current challenges occurring in areas such as industrial process control and environmental monitoring. In particular, for medical breath analysis and for the detection of illegal substances, e.g., drugs and explosives, a selective and sensitive detection of trace gases in real-time is required. We report on a compact and transportable multi-component system (RES-Q-Trace) for molecular trace gas detection based on cavity-enhanced techniques in the mid-infrared (MIR). The RES-Q-Trace system can operate four independent continuous wave quantum or interband cascade lasers each combined with an optical cavity. Twice the method of off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) was used, twice the method of optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS), respectively. Multi-functional software has been implemented (i) for the general system control; (ii) to drive the four different laser sources and (iii) to analyze the detector signals for concentration determination of several molecular species. For the validation of the versatility and the performance of the RES-Q-Trace instrument the species NO, N2O, CH4, C2H4 and C3H6O, with relevance in the fields of breath gas analysis and the detection of explosives have been monitored in the MIR with detection limits at atmospheric pressure in the ppb and ppt range.
  • Item
    Out of the dark: Establishing a large-scale field experiment to assess the effects of artificial light at night on species and food webs
    (Basel : MDPI, 2015) Holzhauer, Stephanie I.J.; Franke, Steffen; Kyba, Christopher C.M.; Manfrin, Alessandro; Klenke, Reinhard; Voigt, Christian C.; Lewanzik, Daniel; Oehlert, Martin; Monaghan, Michael T.; Schneider, Sebastian; Heller, Stefan; Kuechly, Helga; Brüning, Anika; Honnen, Ann-Christin; Hölker, Franz
    Artificial light at night (ALAN) is one of the most obvious hallmarks of human presence in an ecosystem. The rapidly increasing use of artificial light has fundamentally transformed nightscapes throughout most of the globe, although little is known about how ALAN impacts the biodiversity and food webs of illuminated ecosystems. We developed a large-scale experimental infrastructure to study the effects of ALAN on a light-naïve, natural riparian (i.e., terrestrial-aquatic) ecosystem. Twelve street lights (20 m apart) arranged in three rows parallel to an agricultural drainage ditch were installed on each of two sites located in a grassland ecosystem in northern Germany. A range of biotic, abiotic, and photometric data are collected regularly to study the short- and long-term effects of ALAN on behavior, species interactions, physiology, and species composition of communities. Here we describe the infrastructure setup and data collection methods, and characterize the study area including photometric measurements. None of the measured parameters differed significantly between sites in the period before illumination. Results of one short-term experiment, carried out with one site illuminated and the other acting as a control, demonstrate the attraction of ALAN by the immense and immediate increase of insect catches at the lit street lights. The experimental setup provides a unique platform for carrying out interdisciplinary research on sustainable lighting.
  • Item
    A Dual-Mode Surface Acoustic Wave Delay Line for the Detection of Ice on 64°-Rotated Y-Cut Lithium Niobate
    (Basel : MDPI, 2024) Schulmeyer, Philipp; Weihnacht, Manfred; Schmidt, Hagen
    Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.
  • Item
    Volume fraction determination of binary liquid mixtures by measurement of the equalization wavelength
    (Basel : MDPI, 2010) Martincek, I.; Pudis, D.; Kacik, D.; Schuster, K.
    A method for determination of the volume fraction in binary liquid mixtures by measurement of the equalization wavelength of intermodal interference of modes LP01 and LP11 in a liquid core optical fiber is presented in this paper. This method was studied using a liquid core optical fiber with fused silica cladding and a core made up of a binary silicon oil/chloroform liquid mixture with different volume fractions of chloroform. The interference technique used allows us to determine the chloroform volume fraction in the binary mixture with accuracy better than 0.1%. One of the most attractive advantages of presented method is very small volume of investigated mixture needed, as only a few hundred picoliters are necessary for reliable results. © 2010 by the authors.
  • Item
    Fluorescence Microscopy of the HIV-1 Envelope
    (Basel : MDPI, 2020) Carravilla, Pablo; Nieva, José L.; Eggeling, Christian
    Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.
  • Item
    In-Situ Measurement of Fresh Produce Respiration Using a Modular Sensor-Based System
    (Basel : MDPI, 2020) Keshri, Nandita; Truppel, Ingo; Herppich, Werner B.; Geyer, Martin; Weltzien, Cornelia; Mahajan, Pramod V
    In situ, continuous and real-time monitoring of respiration (R) and respiratory quotient (RQ) are crucial for identifying the optimal conditions for the long-term storage of fresh produce. This study reports the application of a gas sensor (RMS88) and a modular respirometer for in situ real-time monitoring of gas concentrations and respiration rates of strawberries during storage in a lab-scale controlled atmosphere chamber (190 L) and of Pinova apples in a commercial storage facility (170 t). The RMS88 consisted of wireless O2 (0% to 25%) and CO2 sensors (0% to 0.5% and 0% to 5%). The modular respirometer (3.3 L for strawberries and 7.4 L for apples) consisted of a leak-proof arrangement with a water-containing base plate and a glass jar on top. Gas concentrations were continuously recorded by the RMS88 at regular intervals of 1 min for strawberries and 5 min for apples and, in real-time, transferred to a terminal program to calculate respiration rates ( RO2 and RCO2 ) and RQ. Respiration measurement was done in cycles of flushing and measurement period. A respiration measurement cycle with a measurement period of 2 h up to 3 h was shown to be useful for strawberries under air at 10 °C. The start of anaerobic respiration of strawberries due to low O2 concentration (1%) could be recorded in real-time. RO2 and RCO2 of Pinova apples were recorded every 5 min during storage and mean values of 1.6 and 2.7 mL kg−1 h−1, respectively, were obtained when controlled atmosphere (CA) conditions (2% O2, 1.3% CO2 and 2 °C) were established. The modular respirometer was found to be useful for in situ real-time monitoring of respiration rate during storage of fresh produce and offers great potential to be incorporated into RQ-based dynamic CA storage system.
  • Item
    Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles
    (Basel : MDPI, 2018) Urbančič, Iztok; Brun, Juliane; Shrestha, Dilip; Waithe, Dominic; Eggeling, Christian; Chojnacki, Jakub
    Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.
  • Item
    Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices
    (Basel : MDPI, 2022) Chaerony Siffa, Ihda; Gerling, Torsten; Masur, Kai; Eschenburg, Christian; Starkowski, Frank; Emmert, Steffen
    The emerging use of low-temperature plasma in medicine, especially in wound treatment, calls for a better way of documenting the treatment parameters. This paper describes the development of a mobile sensory device (referred to as MSD) that can be used during the treatment to ease the documentation of important parameters in a streamlined process. These parameters include the patient’s general information, plasma source device used in the treatment, plasma treatment time, ambient humidity and temperature. MSD was developed as a standalone Raspberry Pi-based version and attachable module version for laptops and tablets. Both versions feature a user-friendly GUI, temperature–humidity sensor, microphone, treatment report generation and export. For the logging of plasma treatment time, a sound-based plasma detection system was developed, initially for three medically certified plasma source devices: kINPen® MED, plasma care®, and PlasmaDerm® Flex. Experimental validation of the developed detection system shows accurate and reliable detection is achievable at 5 cm measurement distance in quiet and noisy environments for all devices. All in all, the developed tool is a first step to a more automated, integrated, and streamlined approach of plasma treatment documentation that can help prevent user variability.
  • Item
    Application of Terahertz radiation to soil measurements: Initial results
    (Basel : MDPI, 2011) Dworak, Volker; Augustin, Sven; Gebbers, Robin
    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future.