Search Results

Now showing 1 - 10 of 22
  • Item
    Characterization of self-modulated electron bunches in an argon plasma
    (Bristol : IOP Publ., 2018) Gross, M.; Lishilin, O.; Loisch, G.; Boonpornprasert, P.; Chen, Y.; Engel, J.; Good, J.; Huck, H.; Isaev, I.; Krasilnikov, M.; Li, X.; Niemczyk, R.; Oppelt, A.; Qian, H.; Renier, Y.; Stephan, F.; Zhao, Q.; Brinkmann, R.; Martinez de la Ossa, A.; Osterhoff, J.; Grüner, F.J.; Mehrling, T.; Schroeder, C.B.; Will, I.
    The self-modulation instability is fundamental for the plasma wakefield acceleration experiment of the AWAKE (Advanced Wakefield Experiment) collaboration at CERN where this effect is used to generate proton bunches for the resonant excitation of high acceleration fields. Utilizing the availability of flexible electron beam shaping together with excellent diagnostics including an RF deflector, a supporting experiment was set up at the electron accelerator PITZ (Photo Injector Test facility at DESY, Zeuthen site), given that the underlying physics is the same. After demonstrating the effect [1] the next goal is to investigate in detail the self-modulation of long (with respect to the plasma wavelength) electron beams. In this contribution we describe parameter studies on self-modulation of a long electron bunch in an argon plasma. The plasma was generated with a discharge cell with densities in the 1013 cm-3 to 1015 cm-3 range. The plasma density was deduced from the plasma wavelength as indicated by the self-modulation period. Parameter scans were conducted with variable plasma density and electron bunch focusing.
  • Item
    Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets
    (Bristol : IOP Publ., 2015) Hasović, Elvedin; Milošević, Dejan B.; Gazibegović-Busuladži, Azra; Čerkić, Aner; Busuladžić, Mustafa
    We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.
  • Item
    Attosecond time delays in C60 valence photoemissions at the giant plasmon
    (Bristol : IOP Publ., 2015) Barillot, T.; Magrakvelidze, M.; Loriot, V.; Bordas, C.; Hervieux, P.-A.; Gisselbrecht, M.; Johnsson, P.; Laksman, J.; Mansson, E.P.; Sorensen, S.; Canton, S.E.; Dahlström, J.M.; Dixit, G.; Madjet, M.E.; Lépine, F.; Chakraborty, H.S.
    We perform time-dependent local density functional calculations of the time delay in C60 HOMO and HOMO-1 photoionization at giant plasmon energies. A semiclassical model is used to develop further insights.
  • Item
    Recent developments in R-matrix applications to molecular processes
    (Bristol : IOP Publ., 2015) Mašín, Zdeněk; Harvey, Alex; Houfek, Karel; Brambila, Danilo S.; Morales, Felipe; Gorfinkiel, Jimena D.; Tennyson, Jonathan; Smirnova, Olga
    We report on recent developments of the UKRmol suite, an implementation of the molecular R- matrix method and present examples of the calculations (e.g. electron scattering, photoionization, high harmonic generation, etc.) it has enabled.
  • Item
    NO2molecular frame photoelectron angular distributions for a range of geometries using the R-matrix method
    (Bristol : IOP Publ., 2015) Brambila, Danilo S.; Harvey, Alex G.; Mašín, Zdeněk; Smirnova, Olga
    We present R-matrix calculations of photoionization from NO2, resolved in energy, angle, and both neutral and ionic state, for a range of molecular geometries, including in the vicinity of the 2A1/2B2 conical intersection.
  • Item
    Intracluster Coulombic decay following intense NIR ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay.
  • Item
    Atomic processes in bicircular fields
    (Bristol : IOP Publ., 2016) Odžak, S.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate laser-assisted electron-ion recombination (LAR), high-order harmonic generation (HHG) and above-threshold ionization (ATI) of argon atoms by a bicircular laser field, which consists of two coplanar counter-rotating circularly polarized fields of frequencies rω and sω. The energy of soft x rays generated in the LAR process is analyzed as a function of the incident electron angle and numerical results of direct recombination of electrons with Ar+ ions are presented. We also present the results of HHG by a bicircular field and confirm the selection rules derived earlier for inert-gas atoms in a p ground state. We show that the photoelectron spectra in the ATI process, presented in the momentum plane, as well as the LAR spectra exhibit the same discrete rotational symmetry as the applied field.
  • Item
    High-order harmonic generation by polyatomic molecules
    (Bristol : IOP Publ., 2017) Odžak, S.; Hasović, E.; Milošević, D.B.
    We present a theory of high-order harmonic generation by arbitrary polyatomic molecules based on the molecular strong-field approximation (MSFA) in the framework of the S-matrix theory. A polyatomic molecule is modeled by an (N + 1)-particle system, which consists of N heavy atomic (ionic) centers and an electron. We derived various versions (with or without the dressing of the initial and/or final molecular state) of the MSFA. The general expression for the T-matrix element takes a simple form for neutral polyatomic molecules. We show the existence of the interference minima in the harmonic spectrum and explain these minima as a multiple-slit type of interference. This is illustrated by numerical examples for the nitrous oxide (N2O) molecule exposed to strong linearly polarized laser field.
  • Item
    Electron Rescattering in a Bicircular Laser Field
    (Bristol : IOP Publ., 2017) Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate high-order above-threshold ionization (HATI) of krypton atoms by a bicircular laser field, which consists of two coplanar co- or counter-rotating circularly polarized fields of frequencies rw and sw. We show that the photoelectron spectra in the HATI process, presented in the momentum plane, exhibit the same discrete rotational symmetry as the driving field. We also analyze HATI spectra for various combinations of the intensities of two field components for co- and counter-rotating fields. We find that the appearance of high-energy plateau for the counter-rotating case is vary sensitive to the laser intensity ratio, while the plateau is always absent for the co-rotating bicircular field.
  • Item
    Strong field ionization of small hydrocarbon chains with full 3D momentum analysis
    (Bristol : IOP Publ., 2015) Schulz, Claus Peter; Birkner, Sascha; Furch, Federico J.; Anderson, Alexandria; Mikosch, Jochen; Schell, Felix; Vrakking, Marc J. J.
    Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.