Search Results

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Item

Towards smooth (010) ß-Ga2O3films homoepitaxially grown by plasma assisted molecular beam epitaxy: The impact of substrate offcut and metal-to-oxygen flux ratio

2020, Mazzolini, P., Bierwagen, O.

Smooth interfaces and surfaces are beneficial for most (opto)electronic devices that are based on thin films and their heterostructures. For example, smoother interfaces in (010) ß-Ga2O3/(AlxGa1-x)2O3 heterostructures, whose roughness is ruled by that of the ß-Ga2O3 layer, can enable higher mobility 2-dimensional electron gases by reducing interface roughness scattering. To this end we experimentally prove that a substrate offcut along the [001] direction allows to obtain smooth ß-Ga2O3 layers in (010)-homoepitaxy under metal-rich deposition conditions. Applying In-mediated metal-exchange catalysis (MEXCAT) in molecular beam epitaxy at high substrate temperatures (Tg = 900 °C) we compare the morphology of layers grown on (010)-oriented substrates having different unintentional offcuts. The layer roughness is generally ruled by (i) the presence of (110)-and bar 110-facets visible as elongated features along the [001] direction (rms < 0.5 nm), and (ii) the presence of trenches (5-10 nm deep) orthogonal to [001]. We show that an unintentional substrate offcut of only ˜ 0.1° almost oriented along the [001] direction suppresses these trenches resulting in a smooth morphology with a roughness exclusively determined by the facets, i.e. rms ˜ 0.2 nm. Since we found the facet-and-trench morphology in layer grown by MBE with and without MEXCAT, we propose that the general growth mechanism for (010)-homoepitaxy is ruled by island growth whose coalescence results in the formation of the trenches. The presence of a substrate offcut in the [001] direction can allow for step-flow growth or island nucleation at the step edges, which prevents the formation of trenches. Moreover, we give experimental evidence for a decreasing surface diffusion length or increasing nucleation density on the substrate surface with decreasing metal-to-oxygen flux ratio. Based on our experimental results we can rule-out step bunching as cause of the trench formation as well as a surfactant-effect of indium during MEXCAT. © 2020 The Author(s). Published by IOP Publishing Ltd.