Search Results

Now showing 1 - 10 of 12
  • Item
    Etching of silicon surfaces using atmospheric plasma jets
    (Bristol : IOP Publ., 2015) Paetzelt, H.; Böhm, G.; Arnold, T.
    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min−1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.
  • Item
    Laser-induced surface modification of biopolymers - Micro/nanostructuring and functionalization
    (Bristol : IOP Publ., 2018) Stankova, N.E.; Atanasov, P.A.; Nedyalkov, N.N.; Tatchev, Dr.; Kolev, K.N.; Valova, E.I.; Armyanov, St.A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.
    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters - wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers' surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.
  • Item
    Investigation of room temperature multispin-assisted bulk diamond 13C hyperpolarization at low magnetic fields
    (Bristol : IOP Publ., 2018) Wunderlich, Ralf; Kohlrautz, Jonas; Abel, Bernd; Haase, Jürgen; Meijer, Jan
    In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.
  • Item
    Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb-Al cathodes studied with high time resolution
    (Bristol : IOP Publ., 2019) Zöhrer, Siegfried; Anders, André; Franz, Robert
    For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material - plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes with high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to earlier results in high vacuum at 10-4. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al+ and Nb2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar+ ions, but also Ar2+ ions faster than other ion species. © 2018 IOP Publishing Ltd.
  • Item
    SERS analysis of Ag nanostructures produced by ion-beam deposition
    (Bristol : IOP Publ., 2018) Atanasov, P.A.; Nedyalkov, N.N.; Nikov, Ru.G.; Grüner, Ch.; Rauschenbach, B.; Fukata, N.
    This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).
  • Item
    Time-resolved ion energy and charge state distributions in pulsed cathodic arc plasmas of Nb−Al cathodes in high vacuum
    (Bristol : IOP Publ., 2018-5-15) Zöhrer, Siegfried; Anders, André; Franz, Robert
    Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb−Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called 'velocity rule' or the 'cohesive energy rule', are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.
  • Item
    Uncovering the (un-)occupied electronic structure of a buried hybrid interface
    (Bristol : IOP Publ., 2019) Vempati, S.; Deinert, J.-C.; Gierster, L.; Bogner, L.; Richter, C.; Mutz, N.; Blumstengel, S.; Zykov, A.; Kowarik, S.; Garmshausen, Y.; Hildebrandt, J.; Hecht, S.; Stahler, J.
    The energy level alignment at organic/inorganic (o/i) semiconductor interfaces is crucial for any light-emitting or -harvesting functionality. Essential is the access to both occupied and unoccupied electronic states directly at the interface, which is often deeply buried underneath thick organic films and challenging to characterize. We use several complementary experimental techniques to determine the electronic structure of p-quinquephenyl pyridine (5P-Py) adsorbed on ZnO(1 0 -1 0). The parent anchoring group, pyridine, significantly lowers the work function by up to 2.9 eV and causes an occupied in-gap state (IGS) directly below the Fermi level E F . Adsorption of upright-standing 5P-Py also leads to a strong work function reduction of up to 2.1 eV and to a similar IGS. The latter is then used as an initial state for the transient population of three normally unoccupied molecular levels through optical excitation and, due to its localization right at the o/i interface, provides interfacial sensitivity, even for thick 5P-Py films. We observe two final states above the vacuum level and one bound state at around 2 eV above E F , which we attribute to the 5P-Py LUMO. By the separate study of anchoring group and organic dye combined with the exploitation of the occupied IGS for selective interfacial photoexcitation, this work provides a new pathway for characterizing the electronic structure at buried o/i interfaces. © 2019 IOP Publishing Ltd.
  • Item
    Glancing angle deposition of sculptured thin metal films at room temperature
    (Bristol : IOP Publ., 2017-9-1) Liedtke, S.; Grüner, C.; Lotnyk, A.; Rauschenbach, B.
    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.
  • Item
    Evidence for Efficient Pathway to Produce Slow Electrons by Ground-state Dication in Clusters
    (Bristol : IOP Publ., 2017) You, Daehyun; Fukuzawa, Hironobu; Sakakibara, Yuta; Takanashi, Tsukasa; Ito, Yuta; Maliyar, Gianluigi G.; Motomura, Koji; Nagaya, Kiyonobu; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Saito, Norio; Oura, Masaki; Schöffler, Markus; Kastirke, Gregor; Hergenhahn, Uwe; Stumpf, Vasili; Gohkberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Ueda, Kiyoshi
    We present an experimental evidence for a so-far unobserved, but potentially very important step relaxation cascades following inner-shell ionization of a composite system: Multiply charged ionic states created after Auger decay may be neutralized by electron transfer from a neighboring species, producing at the same time a low-energy free electron. This electron transfer-mediated decay (ETMD) called process is effective even after Auger decay into the dicationic ground state. Here, we report the ETMD of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.
  • Item
    Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis
    (Bristol : IOP Publ., 2018) Lehnert, J.; Spemann, D.; Surjuse, S.; Mensing, M.; Grüner, C.; With, P.; Schumacher, P.; Finzel, A.; Hirsch, D.; Rauschenbach, B.
    This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).