Search Results

Now showing 1 - 10 of 18
  • Item
    Ultra-compact tunable fiber laser for coherent anti-Stokes Raman imaging
    (Chichester [u.a.] : Wiley, 2021) Gottschall, Thomas; Meyer-Zedler, Tobias; Schmitt, Michael; Huber, Robert; Popp, Juergen; Tünnermann, Andreas; Limpert, Jens
    This work describes the construction of an ultra-compact narrowband fiber laser source for coherent anti-Stokes Raman scattering microscopy of Raman tags, that is, for addressing Raman resonances of deuterated molecules and alkyne tags in the spectral range from 2080 to 2220 cm−1. A narrowband and fast electronically tunable cw seed source based on a semiconductor optical amplifier (SOA) emitting around 1335 nm has been employed to seed four-wave mixing (FWM) in an endlessly single mode fiber (ESM) pumped by a ps pulse duration Yb-fiber laser. A conversion efficiency of 50% is demonstrated. This compact fiber optical parametric amplifier (FOPA) has been used to perform coherent anti-Stokes Raman imaging experiments of crystalline deuterated palmitic acid.
  • Item
    Charge transfer characteristics of F6TCNNQ–gold interface
    (Chichester [u.a.] : Wiley, 2020) Kuhrt, Robert; Hantusch, Martin; Knupfer, Martin; Büchner, Bernd
    The metal–organic interface between polycrystalline gold and hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) was investigated by photoelectron spectroscopy with the focus on the charge transfer characteristics from the metal to the molecule. The valence levels, as well as the core levels of the heterojunction, indicate a full electron transfer and a change in the chemical environment. The changes are observed in the first F6TCNNQ layers, whereas for further film growth, only neutral F6TCNNQ molecules could be detected. New occupied states below the Fermi level were observed in the valence levels, indicating a lowest unoccupied molecular orbital (LUMO) occupation due to the charge transfer. A fitting of the spectra reveals the presence of a neutral and a charged F6TCNNQ molecules, but no further species were present.
  • Item
    Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy
    (Chichester [u.a.] : Wiley, 2021) Müller, Anja; Krahl, Thoralf; Radnik, Jörg; Wagner, Andreas; Kreyenschulte, Carsten; Werner, Wolfgang S.M.; Ritter, Benjamin; Kemnitz, Erhard; Unger, Wolfgang E.S.
    The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology.
  • Item
    Interconnection between the Indian and the East Asian summer monsoon: Spatial synchronization patterns of extreme rainfall events
    (Chichester [u.a.] : Wiley, 2022) Gupta, Shraddha; Su, Zhen; Boers, Niklas; Kurths, Jürgen; Marwan, Norbert; Pappenberger, Florian
    A deeper understanding of the intricate relationship between the two components of the Asian summer monsoon (ASM)—the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM)—is crucial to improve the subseasonal forecasting of extreme precipitation events. Using an innovative complex network-based approach, we identify two dominant synchronization pathways between ISM and EASM—a southern mode between the Arabian Sea and southeastern China occurring in June, and a northern mode between the core ISM zone and northern China which peaks in July—and their associated large-scale atmospheric circulation patterns. Furthermore, we discover that certain phases of the Madden–Julian oscillation and the lower frequency mode of the boreal summer intraseasonal oscillation (BSISO) seem to favour the overall synchronization of extreme rainfall events between ISM and EASM while the higher-frequency mode of the BSISO is likely to support the shifting between the modes of ISM–EASM connection.
  • Item
    Regionally aggregated, stitched and de‐drifted CMIP‐climate data, processed with netCDF‐SCM v2.0.0
    (Chichester [u.a.] : Wiley, 2021) Nicholls, Zebedee; Lewis, Jared; Makin, Melissa; Nattala, Usha; Zhang, Geordie Z.; Mutch, Simon J.; Tescari, Edoardo; Meinshausen, Malte
    The world's most complex climate models are currently running a range of experiments as part of the Sixth Coupled Model Intercomparison Project (CMIP6). Added to the output from the Fifth Coupled Model Intercomparison Project (CMIP5), the total data volume will be in the order of 20PB. Here, we present a dataset of annual, monthly, global, hemispheric and land/ocean means derived from a selection of experiments of key interest to climate data analysts and reduced complexity climate modellers. The derived dataset is a key part of validating, calibrating and developing reduced complexity climate models against the behaviour of more physically complete models. In addition to its use for reduced complexity climate modellers, we aim to make our data accessible to other research communities. We facilitate this in a number of ways. Firstly, given the focus on annual, monthly, global, hemispheric and land/ocean mean quantities, our dataset is orders of magnitude smaller than the source data and hence does not require specialized ‘big data’ expertise. Secondly, again because of its smaller size, we are able to offer our dataset in a text-based format, greatly reducing the computational expertise required to work with CMIP output. Thirdly, we enable data provenance and integrity control by tracking all source metadata and providing tools which check whether a dataset has been retracted, that is identified as erroneous. The resulting dataset is updated as new CMIP6 results become available and we provide a stable access point to allow automated downloads. Along with our accompanying website (cmip6.science.unimelb.edu.au), we believe this dataset provides a unique community resource, as well as allowing non-specialists to access CMIP data in a new, user-friendly way.
  • Item
    Raman shifts in MBE-grown SixGe1 − x − ySny alloys with large Si content
    (Chichester [u.a.] : Wiley, 2021) Schlipf, Jon; Tetzner, Henriette; Spirito, Davide; Manganelli, Costanza L.; Capellini, Giovanni; Huang, Michael R. S.; Koch, Christoph T.; Clausen, Caterina J.; Elsayed, Ahmed; Oehme, Michael; Chiussi, Stefano; Schulze, Jörg; Fischer, Inga A.
    We examine the Raman shift in silicon–germanium–tin alloys with high silicon content grown on a germanium virtual substrate by molecular beam epitaxy. The Raman shifts of the three most prominent modes, Si–Si, Si–Ge, and Ge–Ge, are measured and compared with results in previous literature. We analyze and fit the dependence of the three modes on the composition and strain of the semiconductor alloys. We also demonstrate the calculation of the composition and strain of SixGe1 − x − ySny from the Raman shifts alone, based on the fitted relationships. Our analysis extends previous results to samples lattice matched on Ge and with higher Si content than in prior comprehensive Raman analyses, thus making Raman measurements as a local, fast, and nondestructive characterization technique accessible for a wider compositional range of these ternary alloys for silicon-based photonic and microelectronic devices.
  • Item
    Heterogeneous freezing on pyroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin films
    (Chichester [u.a.] : Wiley, 2020) Apelt, Sabine; Höhne, Susanne; Uhlmann, Petra; Bergmann, Ute
    Active deicing of technical surfaces, such as for wind turbines and heat exchangers, currently requires the usage of heat or chemicals. Passive coating strategies that postpone the freezing of covering water would be beneficial in order to save costs and energy. One hypothesis is that pyroelectric active materials can achieve this because of the surface charges generated on these materials when they are subject to a temperature change. High-quality poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films with a high crystallinity, prefererd edge-on orientation, low surface roughness, and comprised of the β-analogous ferroelectric phase were deposited by spin-coating. Freezing experiments with a cooling rate of 1 K min−1 were made on P(VDF-TrFE) coatings in order to separate the effect of different parameters such as the poling direction, film thickness, used solvent, deposition process, underlying substrate, and annealing temperature on the achievable supercooling. The topography and the underlying substrate significantly changed the distribution of freezing temperatures of water droplets in contact with these thin films. In contrast, no significant effect of the thickness, morphology, or pyroelectric effect of the as-prepared domain-state on the freezing temperatures was found.
  • Item
    Correlation of crystal violet biofilm test results of Staphylococcus aureus clinical isolates with Raman spectroscopic read-out
    (Chichester [u.a.] : Wiley, 2021) Ebert, Christina; Tuchscherr, Lorena; Unger, Nancy; Pöllath, Christine; Gladigau, Frederike; Popp, Jürgen; Löffler, Bettina; Neugebauer, Ute
    Biofilm-related infections occur quite frequently in hospital settings and require rapid diagnostic identification as they are recalcitrant to antibiotic therapy and make special treatment necessary. One of the standard microbiological in vitro tests is the crystal violet test. It indirectly determines the amount of biofilm by measuring the optical density (OD) of the crystal violet-stained biofilm matrix and cells. However, this test is quite time-consuming, as it requires bacterial cultivation up to several days. In this study, we correlate fast Raman spectroscopic read-out of clinical Staphylococcus aureus isolates from 47 patients with different disease background with their biofilm-forming characteristics. Included were low (OD < 10), medium (OD ≥ 10 and ≤20), and high (OD > 20) biofilm performers as determined by the crystal violet test. Raman spectroscopic analysis of the bacteria revealed most spectral differences between high and low biofilm performers in the fingerprint region between 750 and 1150 cm−1. Using partial least square regression (PLSR) analysis on the Raman spectra involving the three categories of biofilm formation, it was possible to obtain a slight linear correlation of the Raman spectra with the biofilm OD values. The PLSR loading coefficient highlighted spectral differences between high and low biofilm performers for Raman bands that represent nucleic acids, carbohydrates, and proteins. Our results point to a possible application of Raman spectroscopy as a fast prediction tool for biofilm formation of bacterial strains directly after isolation from the infected patient. This could help clinicians make timely and adapted therapeutic decision in future.
  • Item
    Temperature dependence of strain–phonon coefficient in epitaxial Ge/Si(001): A comprehensive analysis
    (Chichester [u.a.] : Wiley, 2020) Manganelli, C.L.; Virgilio, M.; Skibitzki, O.; Salvalaglio, M.; Spirito, D.; Zaumseil, P.; Yamamoto, Y.; Montanari, M.; Klesse, W.M.; Capellini, G.
    We investigate the temperature dependence of the Ge Raman mode strain–phonon coefficient in Ge/Si heteroepitaxial layers. By analyzing the temperature-dependent evolution of both the Raman Ge-Ge line and of the Ge lattice strain, we obtain a linear dependence of the strain–phonon coefficient as a function of temperature. Our findings provide an efficient method for capturing the temperature-dependent strain relaxation mechanism in heteroepitaxial systems. Furthermore, we show that the rather large variability reported in the literature for the strain–phonon coefficient values might be due to the local heating of the sample due to the excitation laser used in µ-Raman experiments. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd
  • Item
    “Surface,” “satellite” or “simulation”: Mapping intra-urban microclimate variability in a desert city
    (Chichester [u.a.] : Wiley, 2020) Zhou, Bin; Kaplan, Shai; Peeters, Aviva; Kloog, Itai; Erell, Evyatar
    Mapping spatial and temporal variability of urban microclimate is pivotal for an accurate estimation of the ever-increasing exposure of urbanized humanity to global warming. This particularly concerns cities in arid/semi-arid regions which cover two fifths of the global land area and are home to more than one third of the world's population. Focusing on the desert city of Be'er Sheva Israel, we investigate the spatial and temporal patterns of urban–rural and intra-urban temperature variability by means of satellite observation, vehicular traverse measurement, and computer simulation. Our study reveals a well-developed nocturnal canopy layer urban heat island in Be'er Sheva, particularly in the winter, but a weak diurnal cool island in the mid-morning. Near surface air temperature exhibits weak urban–rural and intra-urban differences during the daytime (<1°C), despite pronounced urban surface cool islands observed in satellite images. This phenomenon, also recorded in some other desert cities, is explained by the rapid increase in surface skin temperature of exposed desert soils (in the absence of vegetation or moisture) after sunrise, while urban surfaces are heated more slowly. The study highlights differences among the three methods used for describing urban temperature variability, each of which may have different applications in fields such as urban planning, climate change mitigation, and epidemiological research. © 2019 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.