Search Results

Now showing 1 - 3 of 3
  • Item
    Ultrathin 2D Titanium Carbide MXene (Ti3C2Tx) Nanoflakes Activate WNT/HIF-1α-Mediated Metabolism Reprogramming for Periodontal Regeneration
    (Weinheim : Wiley-VCH, 2021) Cui, Di; Kong, Na; Ding, Liang; Guo, Yachong; Yang, Wenrong; Yan, Fuhua
    Periodontal defect regeneration in severe periodontitis relies on the differentiation and proliferation of periodontal ligament cells (PDLCs). Recently, an emerging 2D nanomaterial, MXene (Ti3C2Tx), has gained more and more attention due to the extensive antibacterial and anticancer activity, while its potential biomedical application on tissue regeneration remains unclear. Through a combination of experimental and multiscale simulation schemes, Ti3C2Tx has exhibited satisfactory biocompatibility and induced distinguish osteogenic differentiation of human PDLCs (hPDLCs), with upregulated osteogenesis-related genes. Ti3C2Tx manages to activate the Wnt/β-catenin signaling pathway by enhancing the Wnt-Frizzled complex binding, thus stabilizing HIF-1α and altering metabolic reprogramming into glycolysis. In vivo, hPDLCs pretreated by Ti3C2Tx display excellent performance in new bone formation and osteoclast inhibition with enhanced RUNX2, HIF-1α, and β-catenin in an experimental rat model of periodontal fenestration defects, indicating that this material has high efficiency of periodontal regeneration promotion. It is demonstrated in this work that Ti3C2Tx has highly efficient therapeutic effects in osteogenic differentiation and periodontal defect repairment. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo
    (Weinheim : Wiley-VCH, 2021) Aziz, Azaam; Holthof, Joost; Meyer, Sandra; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors’ signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels—Expanding the Physicochemical Parameter Space of Biohybrid Materials
    (Weinheim : Wiley-VCH, 2021) Hahn, Dominik; Sonntag, Jannick M.; Lück, Steffen; Maitz, Manfred F.; Freudenberg, Uwe; Jordan, Rainer; Werner, Carsten
    Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.