Search Results

Now showing 1 - 7 of 7
  • Item
    Excited-State Dynamics in Borylated Arylisoquinoline Complexes in Solution and in cellulo
    (Weinheim : Wiley-VCH, 2023) Yang, Tingxiang; Valavalkar, Abha; Romero‐Arenas, Antonio; Dasgupta, Anindita; Then, Patrick; Chettri, Avinash; Eggeling, Christian; Ros, Abel; Pischel, Uwe; Dietzek‐Ivanšić, Benjamin
    Two four-coordinate organoboron N,C-chelate complexes with different functional terminals on the PEG chains are studied with respect to their photophysical properties within human MCF-7 cells. Their excited-state properties are characterized by time-resolved pump-probe spectroscopy and fluorescence lifetime microscopy. The excited-state relaxation dynamics of the two complexes are similar when studied in DMSO. Aggregation of the complexes with the carboxylate terminal group is observed in water. When studying the light-driven excited-state dynamics of both complexes in cellulo, i. e., after being taken up into human MCF-7 cells, both complexes show different features depending on the nature of the anchoring PEG chains. The lifetime of a characteristic intramolecular charge-transfer state is significantly shorter when studied in cellulo (360±170 ps) as compared to in DMSO (∼960 ps) at 600 nm for the complexes with an amino group. However, the kinetics of the complexes with the carboxylate group are in line with those recorded in DMSO. On the other hand, the lifetimes of the fluorescent state are almost identical for both complexes in cellulo. These findings underline the importance to evaluate the excited-state properties of fluorophores in a complex biological environment in order to fully account for intra- and intermolecular effects governing the light-induced processes in functional dyes.
  • Item
    Conjugated Polymer Nanoparticles toward In Vivo Theranostics – Focus on Targeting, Imaging, Therapy, and the Importance of Clearance
    (Weinheim : Wiley-VCH, 2017) Kuehne, Alexander J.C.
    Conjugated polymer nanoparticles are highly fluorescent colloids with tunable emission colors ranging from the visible deep into the near infrared spectrum. Conjugated polymer nanoparticles are easy to prepare, tunable in their size, and virtually nonbleachable. Conjugated polymer particles can also be designed to give off heat upon irradiation. All these properties make conjugated polymer particles ideal materials for biomedical fluorescence and photoacoustic imaging as well as for theranostic applications. Here, different examples of surface functionalization to attach pathological homing devices, imaging modalities, as well as the emerging possibilities for therapeutic measures are discussed. Furthermore, clearance of the particles is considered, which is important to ultimately apply the materials for in vivo theranostics. Due to the conjugated backbone of the conjugated polymers, established degradation strategies, as known from hydrophilic nonconjugated polymer carriers, cannot be applied. Bioinspired strategies and potential pathways for degradation and clearance via structural changes upon triggers such as pH, oxidation, and temperature are also discussed in this progress report. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Multicolor Mechanofluorophores for the Quantitative Detection of Covalent Bond Scission in Polymers
    (Weinheim : Wiley-VCH, 2021) Baumann, Christoph; Stratigaki, Maria; Centeno, Silvia P.; Göstl, Robert
    The fracture of polymer materials is a multiscale process starting with the scission of a single molecular bond advancing to a site of failure within the bulk. Quantifying the bonds broken during this process remains a big challenge yet would help to understand the distribution and dissipation of macroscopic mechanical energy. We here show the design and synthesis of fluorogenic molecular optical force probes (mechanofluorophores) covering the entire visible spectrum in both absorption and emission. Their dual fluorescent character allows to track non-broken and broken bonds in dissolved and bulk polymers by fluorescence spectroscopy and microscopy. Importantly, we develop an approach to determine the absolute number and relative fraction of intact and cleaved bonds with high local resolution. We anticipate that our mechanofluorophores in combination with our quantification methodology will allow to quantitatively describe fracture processes in materials ranging from soft hydrogels to high-performance polymers. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores
    (Weinheim : Wiley-VCH, 2020) Stratigaki, Maria; Göstl, Robert
    In recent years, polymer mechanochemistry has evolved as a methodology to provide insights into the action-reaction relationships of polymers and polymer-based materials and composites in terms of macroscopic force application (stress) and subsequent deformation (strain) through a mechanophore-assisted coupling of mechanical and chemical phenomena. The perplexity of the process, however, from the viewpoint of mechanophore activation via a molecular-scaled disruption of the structure that yields a macroscopically detectable optical signal, renders this otherwise rapidly evolving field challenging. Motivated by this, we highlight here recent advancements of polymer mechanochemistry with particular focus on the establishment of methodologies for the efficient activation and quantification of mechanophores and anticipate to aptly pinpoint unresolved matters and limitations of the respective approaches, thus highlighting possible developments. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Singlet-Oxygen Generation by Peroxidases and Peroxygenases for Chemoenzymatic Synthesis
    (Weinheim : Wiley-VCH, 2020) Ingenbosch, Kim N.; Quint, Stephan; Dyllick-Brenzinger, Melanie; Wunschik, Dennis S.; Kiebist, Jan; Süss, Philipp; Liebelt, Ute; Zuhse, Ralf; Menyes, Ulf; Scheibner, Katrin; Mayer, Christian; Opwis, Klaus; Gutmann, Jochen S.; Hoffmann-Jacobsen, Kerstin
    Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet-oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet-oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet-oxygen formation. All peroxidases and peroxygenases show singlet-oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye-decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet-oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen. © 2020 Wiley-VCH GmbH
  • Item
    Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch
    (Weinheim : Wiley-VCH, 2020) Rietsch, Philipp; Sobottka, Sebastian; Hoffmann, Katrin; Popov, Alexey A.; Hildebrandt, Pascal; Sarkar, Biprajit; Resch-Genger, Ute; Eigler, Siegfried
    Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhou, Yu; Huo, Shuaidong; Loznik, Mark; Göstl, Robert; Boersma, Arnold J.; Herrmann, Andreas
    Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH