Search Results

Now showing 1 - 10 of 15
  • Item
    Microgravity Removes Reaction Limits from Nonpolar Nanoparticle Agglomeration
    (Weinheim : Wiley-VCH, 2022) Pyttlik, Andrea; Kuttich, Björn; Kraus, Tobias
    Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (µ g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity.
  • Item
    Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies
    (Weinheim : Wiley-VCH, 2021) Frieß, Florian V.; Hu, Qiwei; Mayer, Jannik; Gemmer, Lea; Presser, Volker; Balzer, Bizan N.; Gallei, Markus
    In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.
  • Item
    Probiomimetics - Novel Lactobacillus‐Mimicking Microparticles Show Anti‐Inflammatory and Barrier‐Protecting Effects in Gastrointestinal Models
    (Weinheim : Wiley-VCH, 2020) Kuhn, Thomas; Koch, Marcus; Fuhrmann, Gregor
    There is a lack of efficient therapies to treat increasingly prevalent autoimmune diseases, such as inflammatory bowel disease and celiac disease. Membrane vesicles (MVs) isolated from probiotic bacteria have shown tremendous potential for treating intestinal inflammatory diseases. However, possible dilution effects and rapid elimination in the gastrointestinal tract may impair their application. A cell‐free and anti‐inflammatory therapeutic system—probiomimetics—based on MVs of probiotic bacteria (Lactobacillus casei and Lactobacillus plantarum) coupled to the surface of microparticles is developed. The MVs are isolated and characterized for size and protein content. MV morphology is determined using cryoelectron microscopy and is reported for the first time in this study. MVs are nontoxic against macrophage‐like dTHP‐1 and enterocyte‐like Caco‐2 cell lines. Subsequently, the MVs are coupled onto the surface of microparticles according to facile aldehyde‐group functionalization to obtain probiomimetics. A significant reduction in proinflammatory TNF‐α level (by 86%) is observed with probiomimetics but not with native MVs. Moreover, it is demonstrated that probiomimetics have the ability to ameliorate inflammation‐induced loss of intestinal barrier function, indicating their potential for further development into an anti‐inflammatory formulation. These engineered simple probiomimetics that elicit striking anti‐inflammatory effects are a key step toward therapeutic MV translation.
  • Item
    Dual-Use of Seawater Batteries for Energy Storage and Water Desalination
    (Weinheim : Wiley-VCH, 2022) Arnold, Stefanie; Wang, Lei; Presser, Volker
    Seawater batteries are unique energy storage systems for sustainable renewable energy storage by directly utilizing seawater as a source for converting electrical energy and chemical energy. This technology is a sustainable and cost-effective alternative to lithium-ion batteries, benefitting from seawater-abundant sodium as the charge-transfer ions. Research has significantly improved and revised the performance of this type of battery over the last few years. However, fundamental limitations of the technology remain to be overcome in future studies to make this method even more viable. Disadvantages include degradation of the anode materials or limited membrane stability in aqueous saltwater resulting in low electrochemical performance and low Coulombic efficiency. The use of seawater batteries exceeds the application for energy storage. The electrochemical immobilization of ions intrinsic to the operation of seawater batteries is also an effective mechanism for direct seawater desalination. The high charge/discharge efficiency and energy recovery make seawater batteries an attractive water remediation technology. Here, the seawater battery components and the parameters used to evaluate their energy storage and water desalination performances are reviewed. Approaches to overcoming stability issues and low voltage efficiency are also introduced. Finally, an overview of potential applications, particularly in desalination technology, is provided.
  • Item
    Cell-Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System
    (Weinheim : Wiley-VCH, 2023) Heinrich, Eilien; Hartwig, Olga; Walt, Christine; Kardani, Arefeh; Koch, Marcus; Jahromi, Leila Pourtalebi; Hoppstädter, Jessica; Kiemer, Alexandra K.; Loretz, Brigitta; Lehr, Claus‐Michael; Fuhrmann, Gregor
    Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.
  • Item
    Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives
    (Weinheim : Wiley-VCH, 2017) Fischer, Sarah C. L.; Kruttwig, Klaus; Bandmann, Vera; Hensel, René; Arzt, Eduard
    Pressure-sensitive adhesives based on silicone materials have emerging potential as adhesives in healthcare products, in particular for gentle skin adhesives. To this end, adhesion to rough skin and biocompatibility are crucial factors for a successful implementation. In this study, the mechanical, adhesive, and biological properties of the two-component poly(dimethylsiloxane) Soft Skin Adhesive MG 7-9800 (SSA, Dow Corning) have been investigated and compared to Sylgard 184. Different mixing ratios of SSA's components allow for tuning of the shear modulus, thereby modifying the adhesive properties of the polymer. To give a comprehensive insight, the authors have analyzed the interplay between pull-off stress, adhesion energy, and stretch of the adhesive films on smooth and rough surfaces. The focus is placed on the effects of substrate roughness and on low pressure oxygen plasma treatment of the adhesive films. SSA shows superior biocompatibility in in vitro cell culture experiments. High pull-off stresses in the range of 3 N cm−2 on a rough surface are achieved, promising broad application spectra for SSA-based healthcare products.
  • Item
    Transformations of the polycyclic Alumosiloxane Al2(OSiPh2OSiPh2O)3 into new Polycycles and Co(II) and In(III) derivatives of (Ph2SiO)8[Al(O)OH]4
    (Weinheim : Wiley-VCH, 2021) Veith, Michael; Sahin, Fadime; Nadig, Sandra; Huch, Volker; Morgenstern, Bernd
    In the presence of water and amines the etherate of bicyclic Al2(OSiPh2OSiPh2O)3 (II a) can be used to generate novel alumosiloxane polycycles like [O(Ph2SiOSiPh2)O−]2Al2O[O(Ph2SiOSiPh2)O] ⋅ 2 H2N+Et2 (1), [O(Ph2SiOSiPh2)O−]2Al2[O(Ph2Si)O]2 ⋅ 2 HN+Et3 (2), [O(Ph2SiOSiPh2)O−]2Al2[O(Ph2SiOSiPh2)O]2 ⋅ 2 HN+Et3 (3 a, 3 b), which crystallizes in two different phases, and [O(Ph2SiOSiPh2)O−]2Al2[O(Ph2SiOSiPh2)O]2 ⋅ 2 HN+(CH2CH2)3N (4). As a common structural feature of these compounds two aluminum atoms which are incorporated in six-membered Al[O(SiPh2OSiPh2)O−] rings are connected as spiro cyclic centers through oxygen and/or siloxane bridges [(OSiPh2)nO] (n=1, 2) to form an assembly of three fused rings at the aluminum corners. The central ring is either eight- (1, 2) or twelve-membered (3, 4). Alkyl ammonium cations balance the charges and form hydrogen bridges to oxygen atoms of the six membered rings. The pentacyclic (Ph2SiO)8[Al(O)OH]4 (I) can be used indirectly (addition of water) and directly as chelating ligand versus Co(II)Cl and In-CH3 fragments as shown with the isolated and structurally characterized compounds (HN+Et3)2{[(Ph2Si)2O3][Al4(OH)4O2](CoCl)2}2− (5 a, 5 b) and (Ph2SiO)8[AlO(OH)]2[AlO2]2(InCH3) ⋅ 2 O(CH2)4 (6).
  • Item
    Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State
    (Weinheim : Wiley-VCH, 2022) Hübner, Hanna; Niebuur, Bart‐Jan; Janka, Oliver; Gemmer, Lea; Koch, Marcus; Kraus, Tobias; Kickelbick, Guido; Stühn, Bernd; Gallei, Markus
    Block copolymers (BCPs) in the bulk state are known to self-assemble into different morphologies depending on their polymer segment ratio. For polymers with amorphous and crystalline BCP segments, the crystallization process can be influenced significantly by the corresponding bulk morphology. Herein, the synthesis of the amorphous-crystalline BCP poly(dimethyl silacyclobutane)-block-poly(2vinyl pyridine), (PDMSB-b-P2VP), by living anionic polymerization is reported. Polymers with overall molar masses ranging from 17 400 g to 592 200 g mol−1 and PDMSB contents of 4.8–83.9 vol% are synthesized and characterized by size-exclusion chromatography and NMR spectroscopy. The bulk morphology of the obtained polymers is investigated by means of transmission electron microscopy and small angle X-ray scattering, revealing a plethora of self-assembled structures, providing confined and nonconfined conditions. Subsequently, the influence of the previously determined morphologies and their resulting confinement on the crystallinity and crystallization behavior of PDMSB is analyzed via differential scanning calorimetry and powder X-ray diffraction. Here, fractionated crystallization and supercooling effects are observable as well as different diffraction patterns of the PDMSB crystallites for confined and nonconfined domains.
  • Item
    Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation
    (Weinheim : Wiley-VCH, 2022) de Miguel‐Jiménez, Adrián; Ebeling, Bastian; Paez, Julieta I.; Fink‐Straube, Claudia; Pearson, Samuel; del Campo, Aránzazu
    Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes. The resulting hydrogels are cytocompatible and stable in cell culture conditions. Here, the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-TzMS crosslinking as a function of buffer, crosslinker structure and degree of TzMS functionality are reported. Crosslinkers of different architecture, length and chemical nature (PEG versus peptide) are tested, and degree of TzMS functionality is modified by inclusion of RGD cell-adhesive ligand, all at concentration ranges typically used in cell culture. These studies corroborate that thiol/PEG-4TzMS hydrogels show gelation times and stiffnesses that are suitable for 3D cell encapsulation and tunable through changes in hydrogel composition. The results of this study guide formulation of encapsulating hydrogels for manual and automated 3D cell culture.
  • Item
    Gallium and Indium Alkoxides with Hydride, Cyclopentadienediide and Copper(I) tert-Butoxide as further Components
    (Weinheim : Wiley-VCH, 2019) Veith, M.; Summa, D.; Annel, U.; Huch, V.
    Gallium hydride stabilized by the base quinonuclidine reacts with acetone under addition of the Ga-H function to the carbon–oxygen double bond yielding (HGa)5(OiPr)8O (1) as isolable compound. (HGa)5(OiPr)8O may be formally split in to four entities of HGa(OiPr)2 and one entity HGaO. The inner atomic skeleton of 1 is a novel Ga5O9 heterocluster with gallium atoms occupying the corners of a distorted trigonal bi-pyramid, an oxygen atom in the center and the remaining alcoholate oxygen atoms bridging eight of the nine edges of the bi-pyramid (X-ray diffraction analysis). Potassium indium alkoxide KIn(OtBu)4 has been used to synthesize several new compounds like In4(OtBu)8(C5H4)2 (2), (py)2CuIn(OtBu)4 (3), and [CuIn(OtBu)4]2 (4) by reaction with TiCl2cp2 (2) and CuCl (3, 4). All compounds were characterized by spectroscopic means and by X-ray structure analyses revealing novel polycyclic structures. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.