Search Results

Now showing 1 - 3 of 3
  • Item
    Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective
    (Weinheim : Wiley-VCH, 2020) Shen, Huidong; Peppel, Tim; Strunk, Jennifer; Sun, Zhenyu
    Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal-free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost-effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal-free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Cycloaddition of Alkenes and Alkynes to the P-centered Singlet Biradical [P(μ-NTer)]2
    (Weinheim : Wiley-VCH, 2020) Chojetzki, Lukas; Schulz, Axel; Villinger, Alexander; Wustrack, Ronald
    The reaction of biradical [P(μ-NTer)]2 (1, Ter = 2,6-bis(2,4,6-trimethylphenyl)phenyl) towards different alkenes (R = 2,3-dimethyl–butadiene, 2,5-dimethyl-2,4-hexadiene, 1,7-octadiene, 1,4-cyclohexadiene) and alkynes (R = 1,4-diphenyl-1,3-butadiyne) was studied experimentally. Although these olefins can react in different ways, only [2+2] cycloaddition products (1R) were observed. The reaction with 2,3-dimethylbutadiene also led to the [2+2] product (1dmb). Thermal treatment of 1dmb above 140 °C resulted in the recovery of biradical 1 upon homolytic bond cleavage of the two P–C bonds and the release of 2,3-dimethylbutadiene. In contrast to this reaction, all other [2+2] additions products (1R, R = 1,7-octadiene, 1,4-cyclohexadiene, 1,4-diphenyl-1,3-butadiyne) began to decompose at temperatures between 200 °C and 300 °C. Only unidentified products were obtained but no temperature-controlled equilibrium reactions were observed. Computations were carried out to shed light into the formal [2+2] as well as the possible [4+2] addition reaction.
  • Item
    On New Staudinger Type Reactions of Phosphorus Centered Biradicaloids, [P(μ-NR)]2 (R = Ter, Hyp), with Ionic and Covalent Azides
    (Weinheim : Wiley-VCH, 2020) Schulz, Axel; Hinz, Alexander; Rölke, Anne; Villinger, Alexander; Wustrack, Ronald
    Phosphorus centered biradicaloids of the type [P(μ-NTer)]2 [R = Ter = terphenyl = 2,6-bis(2,4,6-trimethylphenyl)phenyl, Hyp = tris(trimethylsilyl)silyl] were treated with covalent (R-N3) and ionic azides (AgN3 and Hg(N3)2). While the reaction with the ionic azides led exclusively to the formation of diazides, [N3P(μ-NTer)]2, triaza-diphospha-pentadienes, RN=P–N(R')–P=NR, were observed in the reaction with covalent azides featuring a Staudinger type reaction followed by PN bond rearrangement reactions. This new Staudinger type mechanism as well as the structure, bonding and thermodynamics along different reaction paths are discussed based on DFT computations.